Статистический анализ данных (курс лекций, К.В.Воронцов)/2015/1
Материал из MachineLearning.
м (Новая: Ниже под обозначением <tex>X^n, \;\; X_i \sim p\cdot N(\mu,\sigma^2)+ \left(1-p\right)\cdot U\left[-a,b\right]</tex> понимается выборка объёма <...) |
м |
||
Строка 4: | Строка 4: | ||
Требуется исследовать поведение указанной пары статистических критериев, подходящих для решения одной и той же задачи, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики зависимости достигаемых уровней значимости и оценок мощностей от параметров, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий. Для получения более гладких графиков рекомендуется применять оба критерия к одним и тем же выборкам, а не генерировать их отдельно для каждого критерия. | Требуется исследовать поведение указанной пары статистических критериев, подходящих для решения одной и той же задачи, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики зависимости достигаемых уровней значимости и оценок мощностей от параметров, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий. Для получения более гладких графиков рекомендуется применять оба критерия к одним и тем же выборкам, а не генерировать их отдельно для каждого критерия. | ||
* <tex>X^n, \;\; X_i\sim Ber(p); </tex><br> <tex>H_0\,:\, p=p_0,</tex><br> <tex>H_1\,:\, p\neq p_0;</tex><br> <tex>p=0.01\,:\,0.01\,:\,0.5, \;\; n=5\,:\,1\,:\,70.</tex> | * <tex>X^n, \;\; X_i\sim Ber(p); </tex><br> <tex>H_0\,:\, p=p_0,</tex><br> <tex>H_1\,:\, p\neq p_0;</tex><br> <tex>p=0.01\,:\,0.01\,:\,0.5, \;\; n=5\,:\,1\,:\,70.</tex> | ||
- | ::Сендерович: <tex>p_0=\frac1{2}</tex>, сравнить версии z- | + | ::Сендерович: <tex>p_0=\frac1{2}</tex>, сравнить версии z-критерия в версиях Вальда и множителей Лагранжа. |
::Лисяной: <tex>p_0=\frac1{4}</tex>, сравнить z-критерий (в версии множителей Лагранжа) и точный критерий. | ::Лисяной: <tex>p_0=\frac1{4}</tex>, сравнить z-критерий (в версии множителей Лагранжа) и точный критерий. | ||
Версия 20:34, 24 февраля 2015
Ниже под обозначением понимается выборка объёма из смеси нормального и равномерного распределений с весами и соответственно (при генерации каждой выборки используется случайный датчик — если его значение не превосходит , то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из равномерного).
Анализ поведения схожих критериев
Требуется исследовать поведение указанной пары статистических критериев, подходящих для решения одной и той же задачи, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики зависимости достигаемых уровней значимости и оценок мощностей от параметров, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий. Для получения более гладких графиков рекомендуется применять оба критерия к одним и тем же выборкам, а не генерировать их отдельно для каждого критерия.
- Сендерович: , сравнить версии z-критерия в версиях Вальда и множителей Лагранжа.
- Лисяной: , сравнить z-критерий (в версии множителей Лагранжа) и точный критерий.
Анализ устойчивости критериев к нарушению предположений
Требуется исследовать поведение указанного критерия в условиях нарушения лежащих в его основе предположений. Оценить мощность и достигаемый уровень значимости критерия при различных значениях параметров, сделать выводы об устойчивости.