Вычисление второй производной по одной переменной

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 1: Строка 1:
== Введение ==
== Введение ==
=== Постановка математической задачи ===
=== Постановка математической задачи ===
-
Допустим, что в некоторой точке <tex>x_0</tex> у функции <tex>f(x)</tex> существует производная 2-го порядка <tex>f''(x_0)</tex>, которую точно вычислить либо не удается, либо слишком сложно. В этом случае для приближенного нахождения производной функции требуется использовать методы численного дифференцирования.
+
Допустим, что в некоторой точке <tex>x</tex> у функции <tex>y(x)</tex> существует производная 2-го порядка <tex>y''(x_0)</tex>, которую точно вычислить либо не удается, либо слишком сложно. В этом случае для приближенного нахождения производной функции требуется использовать методы численного дифференцирования.
-
=== Варианты решения задачи ===
+
-
 
+
== Изложение метода ==
== Изложение метода ==
 +
При численном дифференцировании функцию <tex>y(x)</tex> аппроксимируют легко вычисляемой функцией <tex>\fi(x;a)</tex> и приближенно полагают <tex>y^{(k)}(x)\approx\fi^{(k)}(x;a)</tex>. При этом можно использовать различные способы аппроксимации. Рассмотрим простейший случай - аппроксимацию интерполяционным многочленом Ньютона
== Числовой пример ==
== Числовой пример ==
== Рекомендации программисту ==
== Рекомендации программисту ==

Версия 17:16, 15 октября 2008

Содержание

Введение

Постановка математической задачи

Допустим, что в некоторой точке x у функции y(x) существует производная 2-го порядка y''(x_0), которую точно вычислить либо не удается, либо слишком сложно. В этом случае для приближенного нахождения производной функции требуется использовать методы численного дифференцирования.

Изложение метода

При численном дифференцировании функцию y(x) аппроксимируют легко вычисляемой функцией \fi(x;a) и приближенно полагают y^{(k)}(x)\approx\fi^{(k)}(x;a). При этом можно использовать различные способы аппроксимации. Рассмотрим простейший случай - аппроксимацию интерполяционным многочленом Ньютона

Числовой пример

Рекомендации программисту

Заключение

Список литературы

  • А.А.Самарский, А.В.Гулин.  Численные методы. Москва «Наука», 1989.
  • Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков.  Численные методы. Лаборатория Базовых Знаний, 2003.

http://win-web.ru/uchebniki/open/bahvalov_chisl_meth.html

  • Н.Н.Калиткин.  Численные методы. Москва «Наука», 1978.


Личные инструменты