Участник:Коликова Катя/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Постановка математической задачи)
Строка 1: Строка 1:
== Введение ==
== Введение ==
-
=== Постановка математической задачи ===
+
=== Постановка вопроса ===
 +
:Процесс исследования исходного объекта методом математического моделирования и вычислительного эксперимента неизбежно носит приближенный характер, так как на каждом этапе вносятся погрешности. Построение математической модели связано с упрощением исходного явления, недостаточно точным заданием коэффициентов уравнения и других входных данных. По отношению к численному методу, реализующему данную математическую модель, указанные погрешности являются ''неустранимыми'', поскольку они неизбежны в рамках данной модели.
 +
 
 +
При переходе от математической модели к численному методу возникают погрешности, называемые ''погрешностями метода''. Они связаны с тем, что всякий численный метод воспроизводит исходную математическую модель приближенно. Наиболее типичными погрешностями метода являются ''погрешность дискретизации'' и ''погрешность округления''.
 +
 
 +
При построении численного метода в качестве аналога исходной математической задачи обычно рассматривается ее дискретная модель. Разность решений дискретизированной задачи и исходной называется ''погрешностью дискретизации''.
 +
 
== Изложение метода ==
== Изложение метода ==
== Числовой пример ==
== Числовой пример ==

Версия 18:30, 16 октября 2008

Содержание

Введение

Постановка вопроса

Процесс исследования исходного объекта методом математического моделирования и вычислительного эксперимента неизбежно носит приближенный характер, так как на каждом этапе вносятся погрешности. Построение математической модели связано с упрощением исходного явления, недостаточно точным заданием коэффициентов уравнения и других входных данных. По отношению к численному методу, реализующему данную математическую модель, указанные погрешности являются неустранимыми, поскольку они неизбежны в рамках данной модели.

При переходе от математической модели к численному методу возникают погрешности, называемые погрешностями метода. Они связаны с тем, что всякий численный метод воспроизводит исходную математическую модель приближенно. Наиболее типичными погрешностями метода являются погрешность дискретизации и погрешность округления.

При построении численного метода в качестве аналога исходной математической задачи обычно рассматривается ее дискретная модель. Разность решений дискретизированной задачи и исходной называется погрешностью дискретизации.

Изложение метода

Числовой пример

Рекомендации программисту

Заключение

Список литературы

Личные инструменты