Участник:Коликова Катя/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Постановка вопроса)
(Постановка вопроса)
Строка 3: Строка 3:
Процесс исследования исходного объекта методом математического моделирования и вычислительного эксперимента неизбежно носит приближенный характер, так как на каждом этапе вносятся погрешности. Построение математической модели связано с упрощением исходного явления, недостаточно точным заданием коэффициентов уравнения и других входных данных. По отношению к численному методу, реализующему данную математическую модель, указанные погрешности являются ''неустранимыми'', поскольку они неизбежны в рамках данной модели.
Процесс исследования исходного объекта методом математического моделирования и вычислительного эксперимента неизбежно носит приближенный характер, так как на каждом этапе вносятся погрешности. Построение математической модели связано с упрощением исходного явления, недостаточно точным заданием коэффициентов уравнения и других входных данных. По отношению к численному методу, реализующему данную математическую модель, указанные погрешности являются ''неустранимыми'', поскольку они неизбежны в рамках данной модели.
-
При переходе от математической модели к численному методу возникают погрешности, называемые ''погрешностями метода''. Они связаны с тем, что всякий численный метод воспроизводит исходную математическую модель приближенно. Наиболее типичными погрешностями метода являются ''погрешность дискретизации'' и ''погрешность округления''. <br />При построении численного метода в качестве аналога исходной математической задачи обычно рассматривается ее дискретная модель. Разность решений дискретизированной задачи и исходной называется ''погрешностью дискретизации''.
+
При переходе от математической модели к численному методу возникают погрешности, называемые '''''погрешностями метода'''''. Они связаны с тем, что всякий численный метод воспроизводит исходную математическую модель приближенно. Наиболее типичными погрешностями метода являются '''''погрешность дискретизации''''' и '''''погрешность округления'''''. <br />При построении численного метода в качестве аналога исходной математической задачи обычно рассматривается ее дискретная модель. Разность решений дискретизированной задачи и исходной называется '''''погрешностью дискретизации'''''.
== Изложение метода ==
== Изложение метода ==

Версия 18:34, 16 октября 2008

Содержание

Введение

Постановка вопроса

Процесс исследования исходного объекта методом математического моделирования и вычислительного эксперимента неизбежно носит приближенный характер, так как на каждом этапе вносятся погрешности. Построение математической модели связано с упрощением исходного явления, недостаточно точным заданием коэффициентов уравнения и других входных данных. По отношению к численному методу, реализующему данную математическую модель, указанные погрешности являются неустранимыми, поскольку они неизбежны в рамках данной модели.

При переходе от математической модели к численному методу возникают погрешности, называемые погрешностями метода. Они связаны с тем, что всякий численный метод воспроизводит исходную математическую модель приближенно. Наиболее типичными погрешностями метода являются погрешность дискретизации и погрешность округления.
При построении численного метода в качестве аналога исходной математической задачи обычно рассматривается ее дискретная модель. Разность решений дискретизированной задачи и исходной называется погрешностью дискретизации.

Изложение метода

Числовой пример

Рекомендации программисту

Заключение

Список литературы

Личные инструменты