Участник:Коликова Катя/Песочница
Материал из MachineLearning.
(→Виды мер точности) |
|||
(4 промежуточные версии не показаны) | |||
Строка 1: | Строка 1: | ||
== Введение == | == Введение == | ||
=== Постановка вопроса. Виды погрешностей=== | === Постановка вопроса. Виды погрешностей=== | ||
- | Процесс исследования исходного объекта методом математического моделирования и вычислительного эксперимента неизбежно носит приближенный характер, так как на каждом этапе вносятся погрешности. Построение математической модели связано с упрощением исходного явления, недостаточно точным заданием коэффициентов уравнения и других входных данных. По отношению к численному методу, реализующему данную математическую модель, указанные погрешности являются ''неустранимыми'', поскольку они неизбежны в рамках данной модели. | + | Процесс исследования исходного объекта методом математического моделирования и вычислительного эксперимента неизбежно носит приближенный характер, так как на каждом этапе вносятся погрешности. Построение математической модели связано с упрощением исходного явления, недостаточно точным заданием коэффициентов уравнения и других входных данных. По отношению к численному методу, реализующему данную математическую модель, указанные погрешности являются '''неустранимыми''', поскольку они неизбежны в рамках данной модели. |
- | При переходе от математической модели к численному методу возникают погрешности, называемые | + | При переходе от математической модели к численному методу возникают погрешности, называемые '''погрешностями метода'''. Они связаны с тем, что всякий численный метод воспроизводит исходную математическую модель приближенно. Наиболее типичными погрешностями метода являются '''''погрешность дискретизации''''' и '''''погрешность округления'''''. <br />При построении численного метода в качестве аналога исходной математической задачи обычно рассматривается ее дискретная модель. Разность решений дискретизированной задачи и исходной называется ''погрешностью дискретизации''. Обычно дискретная модель зависит от некоторого параметра (или их множества) дискретизации, при стремлении которого к нулю должна стремиться к нулю и погрешность дискретизации. <br />Дискретная модель представляет собой систему большого числа алгебраических уравнений. Для ее решения используется тот или иной численный алгоритм. Входные данные этой системы, а именно коэффициенты и правые части, задаются в ЭВМ не точно, а с округлением. В процессе работы алгоритма погрешности округления обычно накапливаются, и в результате, решение, полученное на ЭВМ, будет отличаться от точного решения дискретизированной задачи. Результирующая погрешность называется ''погрешностью округления'' (''вычислительной погрешностью''). Величина этой погрешности определяется двумя факторами: точностью представления вещественных чисел в ЭВМ и чувствительностью данного алгоритма к погрешностям округления. |
+ | |||
+ | Итак, следует различать '''погрешности модели''', '''дискретизации''' и '''округления'''. В вопросе преобладания какой-либо погрешности ответ неоднозначен. В общем случае нужно стремиться, чтобы все погрешности имели один и тот же порядок. Например, нецелесообразно пользоваться разностными схемами, имеющими точность 10<sup>−6</sup>, если коэффициенты исходных уравнений задаются с точностью 10<sup>−2</sup>. | ||
- | |||
===Виды мер точности=== | ===Виды мер точности=== | ||
Мерой точности вычислений являются '''''абсолютные''''' и '''''относительные погрешности'''''. ''Абсолютная погрешность'' определяется формулой | Мерой точности вычислений являются '''''абсолютные''''' и '''''относительные погрешности'''''. ''Абсолютная погрешность'' определяется формулой | ||
{{ eqno | 1 }} | {{ eqno | 1 }} | ||
- | ::<tex>\Delta(\tilde a)=|\tilde a-a|</tex> | + | ::<tex>\Delta(\tilde a)=|\tilde a-a|,</tex> |
- | где <tex>\tilde a</tex> – приближение к точному значению <tex>a</tex>. | + | где <tex>\tilde a</tex> – приближение к точному значению <tex>a</tex>. <br />''Относительная погрешность'' определяется формулой |
+ | |||
+ | {{ eqno | 2 }} | ||
+ | ::<tex>\delta(\tilde a)=\frac{|\tilde a-a|}{a}.</tex> | ||
+ | |||
+ | Относительная погрешность часто выражается в процентах. Абсолютная и относительная погрешности тесно связаны с понятием ''верных значащих цифр''. ''Значащими цифрами'' числа называют все цифры в его записи, начиная с первой ненулевой цифры слева. Например, число 0,000129 имеет три значащих цифры. Значащая цифра называется ''верной'', если абсолютная погрешность числа не превышает половины веса разряда, соответствующего этой цифре. Например, <tex>\tilde a=9348</tex>, абсолютная погрешность <tex>\Delta(\tilde a)=15</tex>. Записывая число в виде | ||
+ | |||
+ | <p align="center"><tex>9348=9\cdot10^3+3\cdot10^2+4\cdot10^1+8\cdot10^0,</tex></p> | ||
+ | имеем <tex>0,5\cdot10^1<\Delta(\tilde a)<0,5\cdot10^2</tex>, следовательно, число имеет две верных значащих цифр (9 и 3). | ||
+ | |||
+ | В общем случае абсолютная погрешность должна удовлетворять следующему неравенству: | ||
+ | |||
+ | {{ eqno | 3 }} | ||
+ | <p align="center"><tex>\Delta(\tilde a)<0,5\cdot10^{m-n+1} ,</tex></p> | ||
+ | где <tex>m</tex> - порядок (вес) старшей цифры, <tex>n</tex> - количество верных значащих цифр. <br />В рассматриваемом примере <tex>\Delta(\tilde a)\le0,5\cdot10^{3-2+1}\le0,5\cdot10^2=50</tex>. | ||
== Изложение метода == | == Изложение метода == | ||
Строка 20: | Строка 35: | ||
{{stub}} | {{stub}} | ||
- | [[Категория: | + | [[Категория:MachineLearning:Статьи для улучшения]] |
Текущая версия
Содержание |
Введение
Постановка вопроса. Виды погрешностей
Процесс исследования исходного объекта методом математического моделирования и вычислительного эксперимента неизбежно носит приближенный характер, так как на каждом этапе вносятся погрешности. Построение математической модели связано с упрощением исходного явления, недостаточно точным заданием коэффициентов уравнения и других входных данных. По отношению к численному методу, реализующему данную математическую модель, указанные погрешности являются неустранимыми, поскольку они неизбежны в рамках данной модели.
При переходе от математической модели к численному методу возникают погрешности, называемые погрешностями метода. Они связаны с тем, что всякий численный метод воспроизводит исходную математическую модель приближенно. Наиболее типичными погрешностями метода являются погрешность дискретизации и погрешность округления.
При построении численного метода в качестве аналога исходной математической задачи обычно рассматривается ее дискретная модель. Разность решений дискретизированной задачи и исходной называется погрешностью дискретизации. Обычно дискретная модель зависит от некоторого параметра (или их множества) дискретизации, при стремлении которого к нулю должна стремиться к нулю и погрешность дискретизации.
Дискретная модель представляет собой систему большого числа алгебраических уравнений. Для ее решения используется тот или иной численный алгоритм. Входные данные этой системы, а именно коэффициенты и правые части, задаются в ЭВМ не точно, а с округлением. В процессе работы алгоритма погрешности округления обычно накапливаются, и в результате, решение, полученное на ЭВМ, будет отличаться от точного решения дискретизированной задачи. Результирующая погрешность называется погрешностью округления (вычислительной погрешностью). Величина этой погрешности определяется двумя факторами: точностью представления вещественных чисел в ЭВМ и чувствительностью данного алгоритма к погрешностям округления.
Итак, следует различать погрешности модели, дискретизации и округления. В вопросе преобладания какой-либо погрешности ответ неоднозначен. В общем случае нужно стремиться, чтобы все погрешности имели один и тот же порядок. Например, нецелесообразно пользоваться разностными схемами, имеющими точность 10−6, если коэффициенты исходных уравнений задаются с точностью 10−2.
Виды мер точности
Мерой точности вычислений являются абсолютные и относительные погрешности. Абсолютная погрешность определяется формулой
где – приближение к точному значению .
Относительная погрешность определяется формулой
Относительная погрешность часто выражается в процентах. Абсолютная и относительная погрешности тесно связаны с понятием верных значащих цифр. Значащими цифрами числа называют все цифры в его записи, начиная с первой ненулевой цифры слева. Например, число 0,000129 имеет три значащих цифры. Значащая цифра называется верной, если абсолютная погрешность числа не превышает половины веса разряда, соответствующего этой цифре. Например, , абсолютная погрешность . Записывая число в виде
имеем , следовательно, число имеет две верных значащих цифр (9 и 3).
В общем случае абсолютная погрешность должна удовлетворять следующему неравенству:
где - порядок (вес) старшей цифры, - количество верных значащих цифр.
В рассматриваемом примере .