Тригонометрическая интерполяция

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Постановка задачи)
(Постановка задачи)
Строка 2: Строка 2:
В прикладных задачах часто используются различные преобразования Фурье функций непрерывного аргументся, а также представлений функций с помощью сходящихся тригонометрических рядов.
В прикладных задачах часто используются различные преобразования Фурье функций непрерывного аргументся, а также представлений функций с помощью сходящихся тригонометрических рядов.
Всякую непрерывно дифференцируемую фцнкцию <tex>f</tex> можно разложить в ряд Фурье:
Всякую непрерывно дифференцируемую фцнкцию <tex>f</tex> можно разложить в ряд Фурье:
-
<tex>f(x)=\sum_{k=-\infty}^{\infty} α_k exp{2\pi i k x}</tex>
+
 
 +
<tex>f(x)=\sum_{k=-\infty}^{\infty} \alpha_k exp{2\pi i k x}</tex>
 +
 
 +
коэффициенты <tex>\alpha_k</tex> находятся по следущим формулам
 +
 
 +
<tex>\alpha_k=\int \limits_{0}^{1} f(x) exp {-2 \pi i k x} </tex>
 +
 
==Постановка задачи==
==Постановка задачи==

Версия 18:13, 17 октября 2008

Содержание

Дискретное преобразование Фурье

В прикладных задачах часто используются различные преобразования Фурье функций непрерывного аргументся, а также представлений функций с помощью сходящихся тригонометрических рядов. Всякую непрерывно дифференцируемую фцнкцию f можно разложить в ряд Фурье:

f(x)=\sum_{k=-\infty}^{\infty} \alpha_k exp{2\pi i k x}

коэффициенты \alpha_k находятся по следущим формулам

\alpha_k=\int \limits_{0}^{1} f(x) exp {-2 \pi i k x}


Постановка задачи

Интерполирование функции — приближенное или нахождение точной величины по известным значениям функции в конечном числе точек. В случае тригонометрической интерполяции аппроксимирующая функция ищется в виде

\begin{matrix} f_n(x)=a_0 & + & a_1 \cos x + a_2 \cos 2x+\dots + a_n \cos nx + \\ \ &+&b_1 \sin x + b_2 \sin 2x+\dots + b_n \sin nx . \end{matrix}

Таким образом, ищется приближение функции тригонометрическими полиномами в смысле Фурье.

Потребность в подобной интерполяции возникает в случае, когда приближаемая функция по своей природе предполагается периодической с известным периодом, например 2π.

Погрешность вычислений

Пример использования

Список литературы

Личные инструменты