Участник:Khar

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (Тема: ОПТИМАЛЬНАЯ КЛАСТЕРИЗАЦИЯ)
м (Тема: ОПТИМАЛЬНАЯ КЛАСТЕРИЗАЦИЯ)
Строка 34: Строка 34:
1) Харинов М.В. [http://www.mathnet.ru/links/0324db6221960ab6ff650c89a883fd11/trspy552.pdf Обобщение трех подходов к оптимальной сегментации цифрового изображения // Труды СПИИРАН. 2013. Вып. 2(25). С. 294–316.]
1) Харинов М.В. [http://www.mathnet.ru/links/0324db6221960ab6ff650c89a883fd11/trspy552.pdf Обобщение трех подходов к оптимальной сегментации цифрового изображения // Труды СПИИРАН. 2013. Вып. 2(25). С. 294–316.]
-
2) Харинов М.В. [http://www.bsu.ru/content/pages2/1074/MatematikaInformatika2013.pdf Модель локализации объектов на цифровом изображении // Вестник Бурятского государственного университета. Математика и информатика / №9, Улан-Удэ: Изд-во Бурятского госуниверситета, 2013. С. 182-189.]
+
2) Харинов М.В. [http://elibrary.ru/item.asp?id=20162483 Модель локализации объектов на цифровом изображении // Вестник Бурятского государственного университета. Математика и информатика / №9, Улан-Удэ: Изд-во Бурятского госуниверситета, 2013. С. 182-189.]
'''Комментарий:''' Первая статья без картинок — про две операции с кластерами пикселей: a)слияние кластеров и b)реклассификацию части пикселей из одного кластера в другой, с подробным описанием формул в порядке их получения без громоздких выкладок. Во второй статье вводится третья операция — с)дробление кластера, и все три операции иллюстрируются на примере оптимизации разбиений изображения на связные сегменты.
'''Комментарий:''' Первая статья без картинок — про две операции с кластерами пикселей: a)слияние кластеров и b)реклассификацию части пикселей из одного кластера в другой, с подробным описанием формул в порядке их получения без громоздких выкладок. Во второй статье вводится третья операция — с)дробление кластера, и все три операции иллюстрируются на примере оптимизации разбиений изображения на связные сегменты.

Версия 09:10, 7 мая 2015

Харинов Михаил Вячеславович

ктн, доц., c.н.с. Санкт-Петербургского ин-та информатики и автоматизации РАН (СПИИРАН).

Содержание

Тема: ОПТИМАЛЬНАЯ КЛАСТЕРИЗАЦИЯ

Харинов М.В. Улучшение качества приближения цифрового изображения на основе иерархической сегментации // Вестник Бурятского государственного университета. Математика и информатика. 2014. № 9-3. С. 54-57.

Комментарий: Статья - про алгоритм улучшения сегментации изображения тривиальным методом слияния/разделения сегментов. Обеспечивает эффект метода K-средних или более сильного метода С.Д. Двоенко "K-средних без средних". Но, в отличие от методов K-средних, сохраняет число сегментов в разбиении. Не тривиальна программная реализация в терминах динамических деревьев Слейтора-Тарьяна.

Харинов М.В., Заболотский В.П. Критическая технология квазиоптимального машинного зрения // Информатизация и связь / №3, 2014. — М., С. 43-46.

Комментарий: Статья с минимумом формул и упором на обобщение постановки задачи сегментации (на выходе не единственное разбиение изображения, а последователь- ность разбиений), и задачи оптимизации (на выходе — квазиоптимальные разбиения, которые, в отличие от оптимальных разбиений, составляют иерархическую последователь- ность. Плюс генерация автоматических меток объектов). Минимум ссылок, в том числе — на работы С.Д. Двоенко.

Харинов М.В. Кластеризация пикселей для сегментации цветового изображения // Компьютерная графика и зрение (Графикон’2014) / Труды 24-й международной конференции по компьютерной графике и зрению, Ростов-на-Дону: Академия архитектуры и искусств ЮФУ, 30 сентября – 3 октября 2014 г., С. 123–126.

Комментарий: в статье представлен алгоритм иерархической квазиоптимальной кластеризации/сегментации, который обеспечивает реальную минимизацию суммарной квадратичной ошибки при заранее заданном ограничении на число сегментов в кластерах. Приводится формула суммирования квадратичных ошибок при слиянии нескольких кластеров пикселей. Эта формула обобщает выражение квадратичной ошибки для кластера из отдельных пикселей, которое в различных приложениях кластерного анализа используется в трудах Сергея Даниловича Двоенко.

Харинов М.В. Альтернатива иерархическому методу Оцу для цветового изображения. // Вестник Бурятского государственного университета. Математика и информатика / №9, Улан-Удэ: Изд-во Бурятского госуниверситета, 2014. С. 64-72.

Комментарий: в статье наш метод квазиоптимальной иерархической кластеризации пикселей и сегментации изображения обобщается на случай цветовых изображений. Кластеризация пикселей серого изображения выполняется так же эффективно, как в иерархическом методе Оцу. В отличие от метода Оцу, наш метод остается применимым для цветового изображения.

Харинов М.В. Hierarchical pixel clustering for image segmentation, arXiv preprint, http://arxiv.org/abs/1401.5891

Комментарий: в статье предлагается метод квазиоптимальной (близкой к оптимальной) иерархической сегментации изображения посредством кластеризации пикселей. Сначала выполняется квазиоптимальная кластеризация, а затем уменьшается число сегментов в кластерах при контролируемом сопутствующем снижении качества разбиений изображения.

Харинов М.В. Image segmentation by optimal and hierarchical piecewise constant approximations, arXiv preprint, http://arxiv.org/abs/1306.2159

Комментарий: в статье задается вопрос, - нельзя ли оптимальные приближения изображения аппроксимировать иерархическими? Ответ положительный.

1) Харинов М.В. Обобщение трех подходов к оптимальной сегментации цифрового изображения // Труды СПИИРАН. 2013. Вып. 2(25). С. 294–316.

2) Харинов М.В. Модель локализации объектов на цифровом изображении // Вестник Бурятского государственного университета. Математика и информатика / №9, Улан-Удэ: Изд-во Бурятского госуниверситета, 2013. С. 182-189.

Комментарий: Первая статья без картинок — про две операции с кластерами пикселей: a)слияние кластеров и b)реклассификацию части пикселей из одного кластера в другой, с подробным описанием формул в порядке их получения без громоздких выкладок. Во второй статье вводится третья операция — с)дробление кластера, и все три операции иллюстрируются на примере оптимизации разбиений изображения на связные сегменты.

Харинов М.В. Reclassification formula that provides to surpass K–means method, arXiv preprint, http://arxiv.org/ftp/arxiv/papers/1209/1209.6204.pdf

Комментарий: статья про элементарную формулу, которая в упрощенном виде приводит к методу k-средних, а без упрощения, к более сильному методу кластеризации, который состоит в непосредственной реклассификации подмножества элементов из одного кластера в другой, минуя стадию вычисления центров кластеров.

Тема: СТРУКТУРА ДАННЫХ ДЛЯ МУЛЬТИ-СЕГМЕНТАЦИИ ИЗОБРАЖЕНИЙ

Харинов М.В. Разработка динамических структур данных системы автоматизированного распознавания изображений: Автореф. Дис. канд. технич. наук: 05-13-16 — С.П. 1993. — 20 с.

Харинов М.В. Разработка динамических структур данных системы автоматизированного распознавания изображений: Дис. канд. технич. наук: 05-13-16 — С.П. 1993. — 178 с.

Комментарий: диссертация о том, как работать с многочисленными разбиениями, когда изображение не помещается в оперативной памяти. Расчеты выполнялись в терминах динамических деревьев Слэйтора-Тарьяна и редуцируемой "таблицы связности". В современной нотации динамические деревья Слейтора-Тарьяна обозначаются также терминами "Disjoint sets", "Persistent data structures" и "Splay tree".

Тема: ПСЕВДОТРОИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ

Харинов М.В. Недвоичная логика запоминания информации в изображении // 50 лет модулярной арифметике / Матер. межд. конф. 2005. — 8 с.

Харинов М.В. Псевдотроичная система счисления и анализ изображений // Труды СПИИРАН / Под ред. Р. М. Юсупова, Вып. 1, т. 2. – СПб, СПИИРАН 2002. – С. 269-275.

Комментарий: о системе экономичного кодирования иерархии разбиений значениями пикселей некоторого матричного представления изображения.

Тема: МОДЕЛЬ СИГНАЛА С ЦИФРОВОЙ ПАМЯТЬЮ

1) Харинов М.В. Information quantity in a pixel of digital image, arXiv preprint, http://arxiv.org/abs/1401.7517

2) Харинов М.В. Hierarchical pixel clustering for image segmentation, arXiv preprint, http://arxiv.org/abs/1401.5891

Комментарий: первая статья — о целочисленном количестве информации в пикселе изображения, которое определяется для квазиоптимальной иерархии кластеров пикселей, вторая статья — о построении квазиоптимальной иерархии кластеров пикселей или связных сегментов изображения.

Харинов М.В., Заболотский В.П. Стеганографическая защита документов на основе модели запоминания информации изображения // Информация и связь / №1, 2010. — М., — С. 77-81.(см. также статьи М.В.Харинова в выпусках 1(2), 2(1), 3(2), 4 и 7 Трудов СПИИРАН)

Комментарий: статья про информацию, которую можно записать в сигнал и потом извлечь из сигнала, обладающего определенной емкостью собственной памяти. Доступная емкость памяти сигнала позволяет оценить в битах количество информации, которую можно записать в сигнал. Соответствующая целочисленная оценка количества информации получается в предположении, что при приеме известен только алгоритм записи сообщения в сигнал. Ни исходный сигнал, ни встроенное сообщение заранее не известны. Основной результат состоит в том, что полученная оценка совпадает с классическими. Важно, что количество информации при этом оценивается вне связи со сжатием данных.

Тема: ПЕРЕСТАНОВОЧНАЯ СИММЕТРИЯ

Харинов М.В. Перестановочная и скрытая симметрия на примере изоморфных матриц Адамара. Приложения в области искусственного интеллекта // Средства математического моделирования / Труды Второй межд. конф. — С.-П.: изд-во СПбГТУ, 1999. T.5 — С 247-254.

Комментарий: статья о том, как изобрести игры типа тех, что предложены в патенте СССР № 1799274.

МОНОГРАФИИ

Kharinov M.V. Proved Image Segmentation, Chapter 10 in book: Image Processing: Methods, Applications and Challenges /Ed. Vítor Hugo Carvalho, New York: Nova Science Publishers, Inc., 2012.—pp.207-227.(ISBN: 978-1-62081-844-2).

Комментарий: сводка результатов по оптимальной сегментации цифрового изображения по состоянию на 2011 г.

Харинов М.В. Запоминание и адаптивная обработка информации цифровых изображений / Под ред. Р.М. Юсупова. — СПб.: Изд-во С.Петерб. ун-та, 2006. — 138 с. (ISBN: 5-288-04209-8, монография по проекту РФФИ 06-07-95007).

Комментарий: первая глава - про псевдотроичную систему счисления, следующие три главы - про стеганографическое встраивание в изображение произвольных сообщений, пятая глава - про распознавание объектов в терминах динамических деревьев.

ПАТЕНТЫ

Харинов М.В. Цветовая логическая игра-головоломка "Дальторадуга", патент СССР № 1799274 от 31.10.1990 г., опубл. 28.02.1993. Бюл. № 8.

Комментарий: речь идет о серии развивающих игр, в том числе — электронной игре с перестановочной симметрией.

1) Харинов М.В. Двухкомпонентное встраивание сообщений в изображение, совместный патент РФ от СПИИРАН–«Самсунг Электроникс Ко., Лтд.» № 2331085, опубл. 10.08.2008 в офиц. Бюлл. Пат. ведомства РФ № 22. — 31 с.

2) Харинов М.В. Адаптивное встраивание водяных знаков по нескольким каналам, совм. патент РФ от СПИИРАН–«Самсунг Электроникс Ко., Лтд.» № 2329522, опубл. 20.07.2008 в офиц. Бюлл. Пат. ведомства РФ № 20. — 41 с.

Комментарий: пара патентов по стеганографии, главный — второй, впрочем, его тоже давно следовало бы обновить...

Redkov V., Tikotski A., Luciv V., Potapov A., Averkin A., Kharinov M. Mobile robot and the method of location recognization, заявка KR2012-0124909 от 06 ноября 2012 г. на корейский патент от компании LG.

Комментарий: заявка объединяет несколько решений. Решение, разработанное с участием автора, называется "Fast Adaptive Binary-wise Hierarchical Segmentation Method for Detection of Linear Objects".

Личные инструменты