Участник:Gukov/Песочница

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Изложение метода)
(Изложение метода)
Строка 43: Строка 43:
:<tex>I(\frac{h}{r}) = I_0 + a_1\,\frac{h^{\alpha _1}}{r^{\alpha 1}} + a_2\,\frac{h^{\alpha _2}}{r^{\alpha 2}} + \ldots</tex>
:<tex>I(\frac{h}{r}) = I_0 + a_1\,\frac{h^{\alpha _1}}{r^{\alpha 1}} + a_2\,\frac{h^{\alpha _2}}{r^{\alpha 2}} + \ldots</tex>
-
Чтобы избавиться от степени <tex>h^{\alpha _1}</tex>, составляющей ошибку (ибо среди всех слагаемых, составляющих ошибку, слагамое при <tex>h^{\alpha _1}</tex> является наибольшим) вычислим величину <tex>-I(h) + r^{\alpha _1}\,I(\frac{h}r)</tex>. Имеем:
+
Чтобы избавиться от степени <tex>h^{\alpha _1}</tex>, составляющей ошибку (ибо среди всех слагаемых, составляющих ошибку, слагамое при <tex>h^{\alpha _1}</tex> является наибольшим) вычислим величину <tex>r^{\alpha _1}\,I(\frac{h}r) - I(h)</tex>. Имеем:
:<tex>I_1(h) = r^{\alpha _1}\,I(\frac{h}{r}) - I(h) = r^{\alpha _1}\,I_0 - I_0 +</tex>
:<tex>I_1(h) = r^{\alpha _1}\,I(\frac{h}{r}) - I(h) = r^{\alpha _1}\,I_0 - I_0 +</tex>

Версия 04:59, 19 октября 2008

Содержание

Введение

Постановка математической задачи

Задача численного интегрирования состоит в приближенном нахождении значения интеграла

( 1)
I = \int\limits_a^b f(x)\,dx,

где 
f(x) 
- заданная и интегрируемая на   [a, b] функция. В качестве приближенного значения рассматривается число

( 2)
I_n=\sum_{i=0}^n c_k f(x_k),

где c_k - числовые коэффициенты и x_k - точки отрезка [a,b],  k = 0, 1, \ldots, n . Приближенное равенство

\int\limits_a^b f(x)\,dx=\sum_{k=0}^n c_k f(x_k)

называется квадратурной формулой, а сумма вида (2) - квадартурной суммой. Точки x_i называются узлами квадратурной формулы. Разность

\Psi _n = \int\limits_a^b f(x)\,dx-\sum_{k=0}^n c_k f(x_k)

называется погрешностью квадратурной формулы. Погрешность зависит как от расположения узлов, так и от выбора коэффициентов.

Изложение метода

Предположим, что для вычисления интеграла (1) отрезок [a, b] разбит на N равных отрезков длины h = \frac{b-a}N и на каждом частичном отрезке применяется одна и та жа квадратурная формула. Тогда исходный интеграл I заменяется некоторой квадратурной суммой I_h, причем возникающая погрешность зависит от шага сетки h. Для некоторых квадратурных формул удается получить разложение погрешности I_h - I по степеням h. Предположим, что для данной квадратурной суммы I_h существует разложение:

( 3)
I_h = I_0 + a_1 h^{\alpha _1} + a_2 h^{\alpha _2} + \ldots + a_m h^{\alpha _m} + O(h^{\alpha _{m+1}}),

где 0 < \alpha _1 < \alpha _2 < \ldots < \alpha _m < \alpha _{m+1} и коэффициенты \{ a_i \} \subset \mathbb{R} не зависят от h. При этом величины \{ \alpha _i \} \subset \mathbb{R} предполагаются известными. Теперь предположим:

I(\frac{h}{r}) = I_0 + a_1\,\frac{h^{\alpha _1}}{r^{\alpha 1}} + a_2\,\frac{h^{\alpha _2}}{r^{\alpha 2}} + \ldots

Чтобы избавиться от степени h^{\alpha _1}, составляющей ошибку (ибо среди всех слагаемых, составляющих ошибку, слагамое при h^{\alpha _1} является наибольшим) вычислим величину r^{\alpha _1}\,I(\frac{h}r) - I(h). Имеем:

I_1(h) = r^{\alpha _1}\,I(\frac{h}{r}) - I(h) = r^{\alpha _1}\,I_0 - I_0 +

Числовой пример

Рекомендации программисту

Заключение

Список литературы

Личные инструменты