Структурные модели и глубинное обучение (регулярный семинар)
Материал из MachineLearning.
(→Описание семинара:) |
(→Описание семинара:) |
||
Строка 4: | Строка 4: | ||
Цели исследований научной группы: | Цели исследований научной группы: | ||
- | + | # разработка новых алгоритмов глубинного обучения (Deep Learning), | |
- | + | # решение прикладных задач с использованием методов Deep Learning (автоматическое описание изображений/видео, описание 3D формы, анализ нейро-данных, анализ медицинских изображений, и т.п.), | |
- | + | # теоретические анализ моделей Deep Learning, в т.ч. и с использованием теории структурных моделей | |
== Время заседаний: == | == Время заседаний: == |
Версия 15:40, 24 октября 2015
Содержание |
Описание семинара:
Deep Learning – это разновидность машинного обучения, в основе которой лежат нейронные сети. Сегодня на использовании «глубинного обучения» строятся системы распознавания речи, распознавание визуальных объектов (как статических, так и движущихся) и, наконец, взаимодействие компьютерных систем с естественным языком и вычленение смыслов. Многие ученые считают Deep Learning революцией в машинном обучении, см. например, интервью с директором Facebook по искусственному интеллекту Яном Лекуном (Yann LeCun) (перевод)
Цели исследований научной группы:
- разработка новых алгоритмов глубинного обучения (Deep Learning),
- решение прикладных задач с использованием методов Deep Learning (автоматическое описание изображений/видео, описание 3D формы, анализ нейро-данных, анализ медицинских изображений, и т.п.),
- теоретические анализ моделей Deep Learning, в т.ч. и с использованием теории структурных моделей
Время заседаний:
Регулярный семинар, проводится в ИППИ РАН по понедельникам в 18-00, ауд. 615.
Научные руководители семинара
Е.В. Бурнаев и В. Г. Спокойный
Организатор семинара
Совместный учебно-научный семинар магистерской программы Математические методы оптимизации и стохастики Факультета Компьютерных наук НИУ ВШЭ, Института проблем передачи информации РАН и Лаборатории ПреМоЛаб МФТИ. Куратор семинара Евгений Бурнаев (профили в НИУ ВШЭ и на MathNet.ru)