Спецкурс «Прикладные задачи анализа данных»
Материал из MachineLearning.
(→Лекции) |
(→Лекции) |
||
Строка 237: | Строка 237: | ||
| '''Минимизация ошибок''': построение дерева, максимизирующего ROC AUC, получение интервальных значений целевого признака, деформация для Root Mean Square Percentage Error, оптимизация log_loss для логистической регрессии, линейной ререссии, оптимизация СКО для логистической регрессии, линейной регрессии. | | '''Минимизация ошибок''': построение дерева, максимизирующего ROC AUC, получение интервальных значений целевого признака, деформация для Root Mean Square Percentage Error, оптимизация log_loss для логистической регрессии, линейной ререссии, оптимизация СКО для логистической регрессии, линейной регрессии. | ||
- | '''Линейные алгоритмы''': персептронный алгоритм, режимы обучения, концепция поощрение-наказание, концепция минимизации функционала, линейная регрессия, SGD, хэширование признаков, регуляризация, обобщения регрессии, прогноз раскупаемости, прогноз методом kNN, прогноз линейным оператором, линейный алгоритм над SVD, признаковое прогнозирование спроса, профили товаров, сезонность, LibSVM, LibLinear. Задачи: [[http://tunedit.org/challenge/JRS12Contest?m=summary JRS12]], [[http://www.neural-forecasting-competition.com/NN5/results.htm NN5]], [[http://www.kaggle.com/c/tourism2 tourism2]]'''. | + | '''Линейные алгоритмы''': персептронный алгоритм, режимы обучения, концепция поощрение-наказание, концепция минимизации функционала, линейная регрессия, SGD, delta-bar-delta, хэширование признаков, регуляризация, обобщения регрессии, прогноз раскупаемости, прогноз методом kNN, прогноз линейным оператором, линейный алгоритм над SVD, признаковое прогнозирование спроса, профили товаров, сезонность, LibSVM, LibLinear. Задачи: [[http://tunedit.org/challenge/JRS12Contest?m=summary JRS12]], [[http://www.neural-forecasting-competition.com/NN5/results.htm NN5]], [[http://www.kaggle.com/c/tourism2 tourism2]]'''. |
Версия 11:58, 21 ноября 2015
В настоящее время курс читается,
как отбирались участники - читайте ниже, в "ранее доводимой информации", см. также результаты отбора. Аспиранты, которые ранее вписали курс в учебный план, также обязаны зарегистрироваться. Кроме того, аспиранты, которые не проходили отбор, получат дополнительное задание. Вся остальная информация - в почтовых рассылках зарегистрированным участникам. Общие вопросы можно задавать в комментариях к посту. Сделана рассылка №0 всем зарегистрированным участникам. Сделана рассылка №1 всем зарегистрированным участникам (указана аудитория и время начала). Сделана рассылка лекций 16.09. |
Содержание |
Аннотация
Данный курс был победителем конкурса инновационных учебных технологий. |
Лектор: Дьяконов Александр
Основная цель: практика решения современных задач классификации, прогнозирования, регрессии, рекомендации и т.п., подготовка участников к соревнованиям на платформах Kaggle и Algomost.
Мероприятие проходит в двух режимах:
- спецкурса – лекции о решении прикладных задач, обучение некоторым системам анализа данных (например R, Matlab, Python+ и т.п.
- спецсеминара – обсуждение решаемых задач, выработка общих стратегий, разделение работы в рамках участия в соревновании одной командой, мозговой штурм и т.п.
Важно: от участников потребуется выполнение нетривиальных практических заданий!
Выпускники ПЗАДа, известные в спортивном анализе данных
2013 | 2014 | 2015 |
---|---|---|
Трофимов Михаил Рыжков Александр Софиюк Константин Фонарев Александр Харациди Олег | Гущин Александр Семёнов Станислав Фенстер Александра Ульянов Дмитрий Сиверский Михаил Шапулин Андрей Нижибицкий Евгений Остапец Андрей | это место вакантно |
Правила
- Рассылки материалов делаются только зарегистрированным слушателям курса (перечислены в таблице слушателей).
- Слушатели, которые перестают делать домашние задания, удаляются из таблицы.
- За каждое задание можно было получить от 0 до 10 штрафных баллов. 10 штрафных баллов понижают итоговую оценку на один балл.
- Для аспирантов и студентов ВМК: важно вовремя делать задания (опоздания штрафуются); экзамена, как такового, не будет; штрафы могут быть исправлены только качественным выполнением последующих заданий
Участник | Учёба/работа | Прогноз визитов |
---|---|---|
Нестеров Павел Алексеевич | mail.ru | |
Татараидзе Александр Бидзинович | МГТУ им. Н.Э. Баумана | |
Николаев Владимир Владимирович | ВМК МГУ, 317 группа | |
Авдеев Вадим Александрович | Аспирантура мехмата МГУ | 1 место |
Москвин Сергей Сергеевич | ГУ-ВШЭ, факультет экономики | 3 место |
Тильга Сергей Денисович | Мех-мат, МГУ, 408 группа | |
Майоров Николай Александрович | мехмат МГУ + ШАД | 2 место |
Ахметов Андрей Юревич | Avon | |
Сазонтьев Владимир Владимирович | Аспирантура ВШЭ, Cyberplat | |
Елтышев Евгений Николаевич | МФТИ ФИВТ, ШАД | |
Цитко Денис Юрьевич | ООО "Информикус" | |
Панкратов Антон Михайлович | ВМК МГУ, 417 группа | |
Селютина Юлия Дмитриевна | Rambler&Co | |
Полякова Нина Михайловна | ВМК МГУ, 417 группа | |
Субботин Игорь Анатольевич | Wild Apricot | |
Харченко Максим Александрович | Lamoda group | |
Нехаев Антон Вадимович | АлгоМост | |
Кузнецов Роман Леонидович | ФУПМ МФТИ, ШАД | |
Болкунов Дмитрий Сергеевич | АлгоМост | |
Гусак Юлия Валерьевна | мехмат МГУ, аспирантура | |
Литвинов Денис Владимирович | аспирант ВМК МГУ | |
Мозохина Анастасия Сергеевна | ВМК, ООО "Медицина. Восток-Запад" | |
Родионов Павел Вадимович | Аспирант ВМК МГУ | |
Воронов Михаил Сергеевич | аспирант ВМК МГУ, ЦСР МО РФ |
Лекции
Здесь будет выложена программа нового (2015 года) - по мере чтения курса.
Старые программы см. на страницах прошлых лет.
Число | Лекция | Материалы, замечания |
---|---|---|
16.09.15 | Вводное занятие: цели курса, материалы, правила, участие в соревнованиях.
Разбор конкурсных задач: решение задачи [Search Results Relevance] (классическая и неклассическая задачи поиска, сравнение блоков информации, 3-граммы, настройка случайного леса, деформация ответов и решающие правила, выравнивание распределений ответов). Домашнее задание №1: решение задачи [MSUvisits] (прогноз дня недели следующего визита клиента). | слайды в рассылке |
23.09.15 | Оценка среднего, оценка вероятности, оценка плотности. Весовые схемы.: проблема оценки среднего, выбросы, разные целевые функционалы, оценка минимального контраста, среднее по Колмогорову, SMAPE-минимизация, двухэтапные алгоритмы и их настройка, пересчёт вероятности и прямая оценка, введение весовых схем, устойчивость весовых схем, ансамблирование, непараметрическое восстановление плотности, весовые схемы при оценке плотности. Задача [dunnhumby's Shopper Challenge]. Задача [пробки].
Домашнее задание №1: ещё неделя на решение, потом неделя на отчёты. Материалы:
| слайды в рассылке |
30.09.15 | продолжение Оценка среднего, оценка вероятности, оценка плотности. Весовые схемы.
Разбор конкурсных задач: решение задачи [Liberty Mutual Group: Property Inspection Prediction] (настройка xgboost, ансамбль их сигмоид над xgboost, особенности в целевом признаке), решение задачи [Caterpillar Tube Pricing]. | слайды в рассылке |
07.10.2015 | Искусство визуализации: признаки в задаче [bioresponse], выделение групп признаков, что можно увидеть в данных, оценка признаков и фолдов, деформация ответов, устойчивость закономерностей, профили лет (в прогнозировании вр.рядов), плотности, оценка качества признаков с помощью RF и удалений, результаты алгоритмов и их линейные комбинации, ручная деформация пространств, визуализация и сглаживание плотностей, построение профилей. Что надо знать о признаках. Визуализация по-вертикали и по-горизонтали. Шумы и шумовые признаки. Определение свойств признака (категориальность, группы значений и т.п.). Задачи [cause-effect-pairs], [GiveMeSomeCredit], [DarkWorlds], [Liberty].
Материалы:
Новое домашнее задание: Rossmann Store Sales (Сделать за неделю свой бенчмарк - появиться в лидерборде) | |
14.10.2015 | Искусство визуализации (продолжение).
Функции ошибки / функционалы качества: MAE, RMSE, SMAPE, MAP, MRAE, REL_MAE, PB, нормированные ошибки, несимметричные ошибки, ошибки с точностью до порога, MCE, точность (Precision), полнота, специфичность, False Positive Rate, F1-мера, AUROC, GINI, Log Loss, Hamming Loss, MAP, Discounted Cumulative Gain (DCG), Quadratic Weighted Kappa, редакторское расстояние. Матожидание ошибок. Генерация признаков с помощью функций ошибок. Confusion matrix. Материалы:
Домашнее задание: Rossmann Store Sales (Сделать небольшой отчёт по исследованию задачи и простым методам в ветке) | |
21.10.2015 | Обмен опытом (решение домашних заданий)
Домашнее задание: Rossmann Store Sales (Сделать за 3 недели отчёт в виде pdf-презентации в ветке) | |
28.10.2015 | Функции ошибки / функционалы качества (продолжение). | |
11.11.2015 | Минимизация ошибок: построение дерева, максимизирующего ROC AUC, получение интервальных значений целевого признака, деформация для Root Mean Square Percentage Error, оптимизация log_loss для логистической регрессии, линейной ререссии, оптимизация СКО для логистической регрессии, линейной регрессии.
Линейные алгоритмы: персептронный алгоритм, режимы обучения, концепция поощрение-наказание, концепция минимизации функционала, линейная регрессия, SGD, delta-bar-delta, хэширование признаков, регуляризация, обобщения регрессии, прогноз раскупаемости, прогноз методом kNN, прогноз линейным оператором, линейный алгоритм над SVD, признаковое прогнозирование спроса, профили товаров, сезонность, LibSVM, LibLinear. Задачи: [JRS12], [NN5], [tourism2].
|
Отчётность
- отчёты по решению конкурсных задач (доклады с презентацией + исходники)
- зачёт с оценкой в конце семестра
Страницы курсов прошлых лет
Спецкурс «Прикладные задачи анализа данных» (2013 год)
Спецкурс «Прикладные задачи анализа данных» (2014 год)
Ссылки
- Книга Jure Leskovec, Anand Rajaraman, Jeff Ullman Mining of Massive Datasets * Неплохая книга на английском языке с обзором основных задач и методов в анализе данных (уровень сложности - средний).
- Книга Beautiful Visualization: Looking at Data through the Eyes of Experts (Theory in Practice) по визуализации данных
- Книга Шурыгин А.М. Математические методы прогнозирования * Неплохие идеи для решения некоторых практических задач статистики (но в целом, специфична)
- Статья Прогноз поведения клиентов супермаркетов с помощью весовых схем оценок вероятностей и плотностей.
- Книга Ту Дж., Гонсалес Р. Принципы распознавания образов * Уже чуть устаревшая книга. Но полистать стоит! Первая «энциклопедия по методам классификации».
- Прогнозирование рядов соревнования «Tourism Forecasting Part Two» (414Кб) * Подробное описание некоторых простых алгоритмов для прогнозирования туристических временных рядов.
- Статья A Blending of Simple Algorithms for Topical Classification * Описание метода классификации текстов. Содержание рассказывалось на лекции.
- Книга К.Д. Маннинг, П. Рагхаван, Х. Шютце «Введение в информационный поиск» * Простая, но хорошая книга по основам работы с текстом (прочитать обязательно).
- Статья Алгоритмы для рекомендательной системы: технология LENCOR.
- Книга Научно-популярная лекция «Введение в анализ данных» (PDF, 1.4 Мб) * Вводная лекция, которая написана для просеминара.
- Анализ данных, обучение по прецедентам, логические игры, системы WEKA, RapidMiner и MatLab (практикум на ЭВМ кафедры математических методов прогнозирования) * Глава 12 «Шаманство в анализе данных».
- Научно-популярная лекция «Шаманство в анализе данных» (1.21Мб) * Переработка предыдущего источника в научно-популярную лекцию.
- Научно-популярная лекция «Чему не учат в анализе данных и машинном обучении» * Рассказываются тонкости решения задач, которые умалчиваются в основных курсах.
Аналогичные курсы
- Data Science * Аналогичный (по духу) гарвардский курс
- Страница спецсеминара «Алгебра над алгоритмами и эвристический поиск закономерностей» * Приведены ссылки на сайты с данными реальных задач анализа данных.
Ещё ссылки
Неплохая короткая демка про соревнования в анализе данных, платформы для соревнований и возможности системы R.
РАНЕЕ ДОВОДИМАЯ ИНФОРМАЦИЯ
В сентябре 2015 года будет объявлен новый набор слушателей спецкурса.
Поскольку обычно желающих очень много, а работа на спецкурсе подразумевает сильную вовлечённость студентов и небольшое число слушателей, то будет произведён отбор.
Для участия в отборе необходимо:
- освоить (если его не было в учебной программе) курс Машинное обучение,
- выступить хотя бы в одном соревновании по анализу данных (см. ниже),
- пройти анкетирование (или собеседование в сентябре).
Список допустимых соревнований:
- Search Results Relevance соревнование уже закрыто
- Caterpillar Tube Pricing соревнование уже закрыто
- Liberty Mutual Group: Property Inspection Prediction соревнование уже закрыто
Результат будет учитываться при отборе. Участие в соревновании не гарантирует отбор!
Важно: участие в соревновании должно быть индивидуальное (в команде 1 человек), называйте команду по образцу: "Team Name (I want to PZAD)".
Как всегда: программа нового года будет слегка отличаться от предыдущих (добавлены новые темы, улучшено содержание).
Курс открыт для всех желающих, но при их большом количестве студенты/аспиранты ВМК МГУ пользуются преимуществом.
Вопросы можно задавать в комментариях к этому посту.
Засчитанные ники соревнования Search Results Relevance
- 39rus (I want to PZAD) - отличный результат
- Evgeny Nekrasov (I want to PZAD) - отличный результат
- Artem (I want to PZAD) - отличный результат
- Evgeny Eltyshev (I want to PZAD)
- Denis Tsitko (I want to PZAD)
- anketer (I want to PZAD)
- Andrey Akhmetov (I want to PZAD)
- cheerupdude (I want to PZAD)
- kvas7andy (I want to PZAD) - формальное участие
- Johny Cheescutter (I want to PZAD) - низкий результат
- Nonary Rustam( I want to PZAD) - формальное участие
- Pavel Blinov (I want to PZAD)
- Georgy Ivanov (I want to PZAD)
- HeBo (I want to PZAD)
- Igor Subbotin (I want to PZAD)
- Pasha Podolsky (I want to PZAD)
- Maxim Kharchenko (I want to PZAD)
- golovan (I want to PZAD) - слабая активность
Засчитанные ники соревнования Liberty Mutual Group: Property Inspection Prediction
Очень высокий результат:
- Iskander (I want to PZAD)
- Vladimir Nikolaev (I want to PZAD)
- VA (I want to PZAD)
Остальные результаты коррелируют с бенчмарками или хуже
- Ilya Aleshin(I Want to PZAD)
- dioexul (I want to PZAD)
- kvas7andy (I want to PZAD) формальное участие
- antklen (I want to PZAD)
- Янина Анастасия (I want to PZAD) формальное участие
- Denis Tsitko (I want to PZAD)
- Evgeny Nekrasov (I want to PZAD)
- Tilga Sergey (I want to PZAD)
- Igor Subbotin (I want to PZAD)
- Антон Панкратов (I want to PZAD)
- Kirill Lunev (I want to PZAD)
- Aleksey Pogrebnyak (I want to PZAD)
- WHGP (I want to PZAD)
- Evgeny Eltyshev (I want to PZAD)
- Btbpanda (I want to PZAD)
- dsmolyakov (I want to PZAD)
- Roman K (I want to PZAD) большая активность - 103
- Grigory Dymov (I want to PZAD)
- 39rus (I want to PZAD)
- Evgeny (I want to PZAD)
- Tazhoo Deen (I want to PZAD)
- Roman Khalkechev (I want to PZAD) формальное участие
- Mark Winogradov (I want to PZAD) формальное участие
- Taygrim(I want to PZAD) формальное участие
Засчитанные ники соревнования Caterpillar Tube Pricing
- Kaffo (I want to PZAD) высокий результат
- Sergey Tilga (I want to PZAD) высокий результат
- Nikolay Mayorov (I want to PZAD) высокий результат
- Andrey Akhmetov (I want to PZAD) высокий результат
- Vladimir (I want to PZAD) высокий результат
- Evgeny Eltyshev (I want to PZAD)
- Denis Tsitko (I want to PZAD)
- persiyanov (I want to PZAD)
- denny_sem[I want to PZAD]
- WHGP (I want to PZAD) формальное участие
- Антон Панкратов (I want to PZAD)
- dioexul (I want to PZAD)
- Янина Анастасия (I want to PZAD) формальное участие
- cheerupdude (I want to PZAD)
- grapefroot(I want to PZAD) формальное участие
- Maxim Kharchenko (I want to PZAD)
- Tazhoo Deen (I want to PZAD)
- Julia Gusak (I want to PZAD)
- mondgottin (I want to PZAD) формальное участие
- golovan (I want to PZAD)
- Roman Khalkechev (I want to PZAD) формальное участие
- kittens_gonna_kitt (I want to PZAD) формальное участие