Машинное обучение (курс лекций, В.В.Китов)/2015-2016
Материал из MachineLearning.
(→Первый семестр) |
(→Первый семестр) |
||
Строка 44: | Строка 44: | ||
===Байесовская теория классификации.=== | ===Байесовская теория классификации.=== | ||
Байесовский алгоритм классификации, минимизирующий цену. Случай одинаковых цен. Дискриминативные и генеративные модели. Частотный и байесовский подходы к оцениванию неизвестных параметров. Генеративные модели классификации с гауссовскими внутриклассовыми распределениями: модели LDA, QDA и RDA (QDA с регуляризацией), а также виды упрощающих предположений о матрице внутриклассовых ковариаций. | Байесовский алгоритм классификации, минимизирующий цену. Случай одинаковых цен. Дискриминативные и генеративные модели. Частотный и байесовский подходы к оцениванию неизвестных параметров. Генеративные модели классификации с гауссовскими внутриклассовыми распределениями: модели LDA, QDA и RDA (QDA с регуляризацией), а также виды упрощающих предположений о матрице внутриклассовых ковариаций. | ||
- | |||
===Методы работы с пропущенными данными. Метод наивного Байеса.=== | ===Методы работы с пропущенными данными. Метод наивного Байеса.=== | ||
+мультиномиальная/биномиальная модель наивного Байеса для классификации текстов и преобразование TF-IDF. | +мультиномиальная/биномиальная модель наивного Байеса для классификации текстов и преобразование TF-IDF. | ||
+разложение ожидаемого квадрата ошибки на смещение и дисперсию (bias-variance tradeoff). | +разложение ожидаемого квадрата ошибки на смещение и дисперсию (bias-variance tradeoff). | ||
- | |||
===Моделирование смесью распределений. === | ===Моделирование смесью распределений. === | ||
- | EM-алгоритм. Доказательство неубывания правдоподобия для EM-алгоритма. Вывод EM-алгоритма для смеси нормальных распределений в векторном случае. Подходы к определению числа компонент. Варианты снижения числа параметров и повышения устойчивости EM-алгоритма для смеси нормальных распределений. | + | EM-алгоритм. Доказательство неубывания правдоподобия для EM-алгоритма. Вывод EM-алгоритма для смеси нормальных распределений в векторном случае. Подходы к определению числа компонент. Варианты снижения числа параметров и повышения устойчивости EM-алгоритма для смеси нормальных распределений. |
===Ядерное сглаживание для оценки плотности.=== | ===Ядерное сглаживание для оценки плотности.=== | ||
- | Случай одномерных и многомерных плотностей-основные ядерные функции. Условия сходимости к истинной плотности. Подходы к определению bandwidth (постоянного и зависящего от x). | + | Случай одномерных и многомерных плотностей-основные ядерные функции. Условия сходимости к истинной плотности. Подходы к определению bandwidth (постоянного и зависящего от x). |
===Кластеризация.=== | ===Кластеризация.=== | ||
- | K-средних. Инициализация EM-алгоритма кластеризацией. Мягкая кластеризация через EM-алгоритм. | + | K-средних. Инициализация EM-алгоритма кластеризацией. Мягкая кластеризация через EM-алгоритм. |
==Второй семестр== | ==Второй семестр== |
Версия 13:39, 28 декабря 2015
Машинное обучение (англ. machine learning) - наука об алгоритмах, которые сами настраиваются на известных данных, выделяя их характерную структуру и взаимосвязи между ними, для их компактного описания, визуализации и последующего предсказания новых аналогичных данных. Наука является сравнительно молодой, поскольку многие алгоритмы автоматической настройки на данных являются вычислительно трудоемкими, и их применение стало возможным только с появлением высокопроизводительных вычислительных средств. Основной акцент курса сделан на задачах предсказания дискретных величин (классификация) и непрерывных величин (регрессия), хотя в курсе также подробно рассматриваются смежные области - эффективное снижение размерности пространства, выделение наиболее значимых признаков для предсказания, методы оценивания и сравнения вероятностных распределений.
Курс читается студентам 3 курса кафедры «Математические методы прогнозирования» ВМиК МГУ, магистрам, зачисленным на эту кафедру, и не проходивших ранее аналогичных курсов, а также для всех желающих. На материал данного курса опираются последующие кафедральные курсы.
По изложению, рассматриваются математические основы методов, лежащие в их основе предположения о данных, взаимосвязи методов между собой и особенности их практического применения.
Курс сопровождается семинарами, раскрывающими дополнительные темы курса и отрабатывающими навыки практического применения рассматриваемых методов. Практическое использование методов машинного обучения в основном будет вестись с использованием языка python и соответствующих библиотек для научных вычислений.
От студентов требуются знания линейной алгебры, математического анализа и теории вероятностей. Знание математической статистики, методов оптимизации и какого-либо языка программирования желательно, но не обязательно.
Курс во многом пересекается с курсом К.В.Воронцова по машинному обучению, с которым также рекомендуется ознакомиться.
Программа курса
Первый семестр
Основные понятия и примеры прикладных задач.
Метрические методы регрессии и классификации.
Скачать презентацию
Скачать презентацию (продолжение)
Методы решающих деревьев.
Скачать презентацию
Скачать презентацию (продолжение)
Оценивание моделей.
Классификация линейными методами.
Скачать презентацию
Скачать презентацию (продолжение)
Линейная и нелинейная регрессия.
Скачать презентацию (обновлена 05.11.2015)
Обобщение методов через ядра.
Байесовская теория классификации.
Байесовский алгоритм классификации, минимизирующий цену. Случай одинаковых цен. Дискриминативные и генеративные модели. Частотный и байесовский подходы к оцениванию неизвестных параметров. Генеративные модели классификации с гауссовскими внутриклассовыми распределениями: модели LDA, QDA и RDA (QDA с регуляризацией), а также виды упрощающих предположений о матрице внутриклассовых ковариаций.
Методы работы с пропущенными данными. Метод наивного Байеса.
+мультиномиальная/биномиальная модель наивного Байеса для классификации текстов и преобразование TF-IDF. +разложение ожидаемого квадрата ошибки на смещение и дисперсию (bias-variance tradeoff).
Моделирование смесью распределений.
EM-алгоритм. Доказательство неубывания правдоподобия для EM-алгоритма. Вывод EM-алгоритма для смеси нормальных распределений в векторном случае. Подходы к определению числа компонент. Варианты снижения числа параметров и повышения устойчивости EM-алгоритма для смеси нормальных распределений.
Ядерное сглаживание для оценки плотности.
Случай одномерных и многомерных плотностей-основные ядерные функции. Условия сходимости к истинной плотности. Подходы к определению bandwidth (постоянного и зависящего от x).
Кластеризация.
K-средних. Инициализация EM-алгоритма кластеризацией. Мягкая кластеризация через EM-алгоритм.
Второй семестр
Кластеризация.
Графовый подход к кластеризации. Иерархическая кластеризация. Спектральная кластеризация. Метрики оценки кластеризации.
Нейросети.
Глубинное обучение.
+Различные виды автоэнкодеров.
Методы отбора признаков.
Ансамбли алгоритмов.
Ансамбли алгоритмов (продолжение).
Линейные методы снижения размерности.
PCA, SVD разложения.