Обсуждение участника:Strijov

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 1: Строка 1:
-
== Временно: Метод главных компонент ==
+
{{TOCright}}
-
 
+
-
'''Метод главных компонент''' — способ снижения размерности пространства данных.
+
-
+
-
Он заключается в нахождении линейного ортогонального преобразования исходной матрицы данных в пространство меньшей размерности.
+
-
+
-
При этом выбираются такая ортогональная система координат, которая обеспечивает наименьшую потерю информации в исходных данных.
+
-
+
-
Последнее подразуменает минимальную среднеквадратичную ошибку при проекции данных в пространство заданной размерности.
+
-
+
-
=== Определение метода главных компонент ===
+
-
+
-
[[Изображение:Principal_Component_Analysis.gif|right|frame|Векторы-строки матрицы исходных данных&nbsp;<tex>A</tex> показаны звездочками. Красным крестом отмечен первый вектор-столбец матрицы вращения&nbsp;<tex>V</tex>. Точками отмечены проекции векторов на новую систему координат. Сумма квадратов длин синих линий есть ошибка&nbsp;&#151; количество информации, утраченной при снижении размерности пространства.]]
+
-
 
+
-
Одной из задач аппроксимации является задача приближения множества векторов-строк&nbsp;<tex>\mathbf{a}_i</tex> матрицы&nbsp;<tex>A</tex> их проекциями на некоторую новую ортогональную систему координат.
+
-
 
+
-
Эта система отыскивается на множестве преобразований вращений&nbsp;<tex>V</tex> начальной системы координат.
+
-
 
+
-
При этом множество аппроксимируемых векторов&nbsp;<tex>\mathbf{a}_i</tex>, <tex>i=1,...,m</tex>, отображается в новое множество векторов <tex>\mathbf{z}_i</tex>, где <tex>\mathbf{a}_i,\mathbf{z}_i\in\mathbb{R}^n</tex>.
+
-
+
-
Оператором отображения
+
-
<center><tex>Z=A^TV</tex></center>
+
-
является ортонормальная матрица&nbsp;<tex>V</tex>, то есть <tex>VV^T=I</tex>&nbsp;&#151; единичная матрица.
+
-
 
+
-
Столбцы&nbsp;<tex>Z</tex> называются главными компонентами матрицы&nbsp;<tex>A</tex>. Матрица&nbsp;<tex>V</tex> строится таким образом, что среднеквадратическая разность между векторами&nbsp;<tex>\mathbf{a}_i</tex> и проекцией этих векторов на ортогональную систему координат, заданных&nbsp;<tex>\mathbf{z}_i</tex> минимальна.
+
-
+
-
Наиболее удобным способом получения матрицы&nbsp;<tex>V</tex> является [[сингулярное разложение]] матрицы&nbsp;<tex>A</tex>:
+
-
<center><tex>A=U\Lambda V^T.</tex></center>
+
-
Метод главных компонент позволяет с помощью&nbsp;<tex>k</tex> первых главных компонент можно восстановить исходную матрицу с минимальной ошибкой.
+
-
 
+
-
Критерий минимального значения суммы квадратов расстояния от векторов-столбцов матрицы данных до их проекций на первую главную компоненту называется критерием наибольшей информативности C.Р.&nbsp;Рао.
+
-
 
+
-
Кроме того, матрица&nbsp;<tex>V</tex> выполняет декоррелирующее преобразование, называемое также преобразованием Карунена-Лоэва. В&nbsp;результате этого преобразования исчезает возможная корреляция между векторами-столбцами исходной матрицы&nbsp;<tex>A</tex>. Рао было показано, что строки матрицы&nbsp;<tex>V</tex> есть собственные векторы ковариационной матрицы <center><tex>\Sigma=A^TA,</tex></center> где матрица&nbsp;<tex>A</tex> <i>центрирована</i>&nbsp;&#151; из каждого ее столбца вычтено среднее значение по этому столбцу.
+
-
 
+
-
=== Понятие наибольшей информативности ===
+
-
Рассмотрим <tex>n</tex>-мерную случайную величину&nbsp;<tex>A</tex> с ковариационной матрицей&nbsp;<tex>\Sigma=A^TA</tex>. Обозначим&nbsp;<tex>\mu_1,\dots,\mu_n</tex>&nbsp;&#151; соответствующие собственные числа и <tex>\mathbf{v}_1,\dots,\mathbf{v}_n</tex>&nbsp;&#151; собственные векторы матрицы&nbsp;<tex>\Sigma</tex>. Заметим, что собственные числа и элементы собственных векторов матрицы&nbsp;<tex>\Sigma</tex> всегда действительны. Тогда по теореме о собственных числах <center><tex>\Sigma=\sum_{i=1}^n\mu_i\mathbf{v}_i\mathbf{v}_i^T,</tex>&nbsp;&nbsp;<tex>I=\sum_{i=1}^n\mathbf{v}_i\mathbf{v}_i^T,</tex></center>
+
-
<center><tex>\mathbf{v}_i^T{\Sigma}\mathbf{v}_i=\mu_i,</tex>&nbsp;&nbsp;<tex>\mathbf{v}_i^T{\Sigma}\mathbf{v}_j=0,</tex>&nbsp;&nbsp; <tex>i\neq{j}.</tex> (*)</center> Случайная величина <tex>\mathbf{z}_i=\mathbf{v}_i^TA</tex> называется&nbsp;<tex>i</tex>-й главной компонентой случайной величины&nbsp;<tex>A</tex>. Матрица вращения&nbsp;<tex>V</tex> составлена из векторов-столбцов&nbsp;<tex>\mathbf{v}_1,\ldots,\mathbf{v}_n</tex>. Матрица главных компонент&nbsp;<tex>Z=A^TV</tex> имеет следующие свойства.
+
-
=== Смотри также ===
+
-
* [[Сингулярное разложение]]
+
-
* [[Интегральный индикатор]]
+
-
* [[Обучение без учителя]]
+
-
=== Литература ===
+
-
* Рао&nbsp;С.Р. Линейные статистические методы и их применения. М.:&nbsp;Наука. 1968.&nbsp;&#151; С.&nbsp;530-533.
+
-
* Айвазян&nbsp;С.А., Бухштабер&nbsp;В.М., Енюков&nbsp;И.С., Мешалкин&nbsp;Л.Д. Прикладная статистика. Классификация и снижение размерности. М.:&nbsp;Финансы и статистика.&nbsp;1989.
+
-
* Jolliffe&nbsp;I.T. Principal Component Analysis, Springer Series in Statistics. Springer.&nbsp;2002.
+
-
* Pearson, K. (1901). "On Lines and Planes of Closest Fit to Systems of Points in Space". Philosophical Magazine 2 (6): 559–572. [http://pbil.univ-lyon1.fr/R/liens/pearson1901.pdf]
+
-
=== Внешние ссылки ===
+
-
* [http://pca.narod.ru/ Нелинейный метод главных компонент]
+
-
* [http://en.wikipedia.org/wiki/Principal_components_analysis Principal components analysis at wikipedia.org]
+
-
* [http://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D1%8B%D1%85_%D0%BA%D0%BE%D0%BC%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%82 Метод главных компонент на
+
-
wikipedia.org]
+
-
 
+
-
== Оформление статей ==
+
-
В статье обязательно должны присутствовать:
+
-
* начальное определение, которое четко позиционирует понятие в рамках направления, сформулированное таким образом, чтобы оно было понятно и стороннему человеку, имеющему общую математическую подготовку;
+
-
* категории - это единственный реальный инструмент поиска статей, кроме поиска по названию;
+
-
* ссылки из своей статьи на другие и из других статей на текущую; ссылаться при этом можно и на пока еще не созданные статьи
+
== Для пополнения тулбокса ==
== Для пополнения тулбокса ==
Строка 92: Строка 36:
--[[Участник:Strijov|Strijov]] 19:32, 16 марта 2008 (MSK)
--[[Участник:Strijov|Strijov]] 19:32, 16 марта 2008 (MSK)
 +
 +
== Оформление статей ==
 +
В статье обязательно должны присутствовать:
 +
* начальное определение, которое четко позиционирует понятие в рамках направления, сформулированное таким образом, чтобы оно было понятно и стороннему человеку, имеющему общую математическую подготовку;
 +
* категории - это единственный реальный инструмент поиска статей, кроме поиска по названию;
 +
* ссылки из своей статьи на другие и из других статей на текущую; ссылаться при этом можно и на пока еще не созданные статьи

Версия 13:43, 24 октября 2008

Содержание

Для пополнения тулбокса

Вадим, теперь есть возможность использовать шаблон {{S}} для установки правильных инициалов в статьях. Например, {{S|В. В. Стрижов}} даст такой результат В. В. Стрижов. --Yury Chekhovich 18:52, 12 февраля 2008 (MSK)

Список наблюдения

Рекомендую в настройках в закладке "Список наблюдения" включить следующие галочки "Добавлять созданные мной страницы в список наблюдения" и "Добавлять изменённые мной страницы в список наблюдения". Тае удобнее следить за изменениями на страницах, которые правил. --Yury Chekhovich 13:09, 14 февраля 2008 (MSK)

Вниманию участников

Появилась страница Вниманию участников предназначенная для общения участников по проекту. Предлагаю все идеи и проблемы вносить туда. --Yury Chekhovich 13:51, 29 февраля 2008 (MSK)

Метод главных компонент

Вадим, я обнаружил пустую эту пустую статью созданную участником Vadim Strijov :). Кинул туда буквально одно предложение, чтобы она не была пустой. У тебя нет желания её написать? Можно использовать и этот материал из Википедии. --Yury Chekhovich 10:33, 5 марта 2008 (MSK)

  • Уважаемый Вадим Викторович, я закачал материал из Википедии в Метод главных компонент, начал собирать подзаголовки для расширения. Устойчивость главных компонент, Сколько главных компонент нужно оставлять, Анализ соответствий ... . Добавьте и Вы свои пожелания, пригласите также коллег.--Agor153 14:57, 2 июля 2008 (MSD)
    • Да, тут Андрей Зиновьев на пару недель из Парижа приехал в Россию. Мне удалось с ним связаться и спросить, не возражает ли он против публикации его книги "Визуализация многомерных данных" (2000 г.) на Вашем ресурсе. Он не возражает. А оно Вам надо? (Закономерный и своевременный вопрос ;).)--Agor153 02:12, 3 июля 2008 (MSD)

Спасибо! Да, оно нам надо. Опубликуем. Есть вот такой вопрос. Так как сайт поддерживают официальные организации: РФФИ, Форексис, ВЦ, то мы не должны нарушать авторские права. Мы должны будем поставить заметку, что автор согласен с публикацией и e-mail автора. И вопрос к Вам и к Андрею Зиновьеву: если книга издавалась, то какие права на нее имеет издательство? Разрешит ли оно такую публикацию? --Strijov 11:40, 3 июля 2008 (MSD)

ОК, попробую связаться. Думаю, что с издательством пробем не будет - но пусть он спросит. Все контакты займут, вероятно, несколько недель. (Эти "французские" ученые летом путешествуют вовсю, да и провинциальное российское издательство, вероятно, тоже отдыхает :).)--Agor153 14:06, 3 июля 2008 (MSD)

Здравствуйте, меня зoвут Андрей Зиновьев. Отвечаю на вопрос: на книге стоят два копирайта "Андрей Зиновьев" и "Институт Вычислительного Моделирования СО РАН". Я даю полное согласие на использование файла книги, который можно взять здесь http://pca.narod.ru/ZinovyevBook.pdf. С издательством не будет никаких проблем, они претензий на копирайт не имеют. --zinovyev 18:00, 12 августа 2008 (MSD)

  • Андрей, большое спасибо! --Strijov 01:53, 17 августа 2008 (MSD)

С приездом

Смотрю, ты сразу же рьяно взялся за дело :)) --Yury Chekhovich 18:52, 16 марта 2008 (MSK)

Спасибо!

--Strijov 19:32, 16 марта 2008 (MSK)

Оформление статей

В статье обязательно должны присутствовать:

  • начальное определение, которое четко позиционирует понятие в рамках направления, сформулированное таким образом, чтобы оно было понятно и стороннему человеку, имеющему общую математическую подготовку;
  • категории - это единственный реальный инструмент поиска статей, кроме поиска по названию;
  • ссылки из своей статьи на другие и из других статей на текущую; ссылаться при этом можно и на пока еще не созданные статьи
Личные инструменты