Участник:Podkopaevalex

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Отчет о научно-исследовательской работе)
(Отчет о научно-исследовательской работе)
 
(4 промежуточные версии не показаны)
Строка 11: Строка 11:
'''Весна 2015, 6-й семестр'''
'''Весна 2015, 6-й семестр'''
-
'''Оптимальная Упаковка Белков Методами Выпуклой Оптимизации'''
+
 
 +
'''Прогнозирование структур белков методами полуопределенного программирования'''
''В данной статье рассматривается задача предсказания упаковки белковых молекул в мультимерный комплекс в приближении жестких тел. Для решения поставленной задачи предлагается использовать методы выпуклой оптимизации, например, полуопределенные релаксации. Недостатком большинства существующих алгоритмов (жадных алгоритмов и других) является их вычислительная сложность. В данной работе предлагаются алгоритмы меньшей вычислительной сложности, полученные в результате применения теории графов. Основным результатом является оценка их качества, сравнение с алгоритмами, использовавшимися ранее.
''В данной статье рассматривается задача предсказания упаковки белковых молекул в мультимерный комплекс в приближении жестких тел. Для решения поставленной задачи предлагается использовать методы выпуклой оптимизации, например, полуопределенные релаксации. Недостатком большинства существующих алгоритмов (жадных алгоритмов и других) является их вычислительная сложность. В данной работе предлагаются алгоритмы меньшей вычислительной сложности, полученные в результате применения теории графов. Основным результатом является оценка их качества, сравнение с алгоритмами, использовавшимися ранее.
Строка 18: Строка 19:
'''Публикация'''
'''Публикация'''
-
''Подкопаев А. С., Карасиков М. Е., Максимов Ю. В.'' Оптимальная Упаковка Белков Методами Выпуклой Оптимизации // «Труды МФТИ», том 7, № 4(28), 2015 (опубликована)
+
''Подкопаев А. С., Карасиков М. Е., Максимов Ю. В.'' Прогнозирование структур белков методами полуопределенного программирования // «Труды МФТИ», том 7, № 4(28), 2015 (опубликована)
 +
 
 +
 
'''Осень 2015, 7-й семестр'''
'''Осень 2015, 7-й семестр'''
 +
'''Time Complexity of Structural Risk Minimization'''
'''Time Complexity of Structural Risk Minimization'''
Строка 29: Строка 33:
'''Технический отчет'''
'''Технический отчет'''
-
''Подкопаев А. С.'' Time Complexity of Structural Risk Minimization [http://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group274/Podkopaev2015TimeComplexity/doc/Podkopaev2015SystemDocs.docx?format=raw docx] // Сервер вычислительных экспериментов mvr.jmlda.org
+
''Подкопаев А. С.'' [http://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group274/Podkopaev2015TimeComplexity/doc/Podkopaev2015SystemDocs.docx?format=raw Time Complexity of Structural Risk Minimization] // Сервер вычислительных экспериментов mvr.jmlda.org

Текущая версия

МФТИ, ФУПМ

Кафедра "Интеллектуальные системы"

Направление "Интеллектуальный анализ данных"

podkopaev@phystech.edu

Отчет о научно-исследовательской работе

Весна 2015, 6-й семестр


Прогнозирование структур белков методами полуопределенного программирования

В данной статье рассматривается задача предсказания упаковки белковых молекул в мультимерный комплекс в приближении жестких тел. Для решения поставленной задачи предлагается использовать методы выпуклой оптимизации, например, полуопределенные релаксации. Недостатком большинства существующих алгоритмов (жадных алгоритмов и других) является их вычислительная сложность. В данной работе предлагаются алгоритмы меньшей вычислительной сложности, полученные в результате применения теории графов. Основным результатом является оценка их качества, сравнение с алгоритмами, использовавшимися ранее.

Публикация

Подкопаев А. С., Карасиков М. Е., Максимов Ю. В. Прогнозирование структур белков методами полуопределенного программирования // «Труды МФТИ», том 7, № 4(28), 2015 (опубликована)


Осень 2015, 7-й семестр


Time Complexity of Structural Risk Minimization

В данной работе рассматривается задача обучения по прецедентам. Пусть задана обучающая выборка, на которой известны значения меток классов. Пусть также классификаторы принадлежат некоторому семейству. В соответствии со стандартной постановкой, требуется из данного семейства выбрать тот классификатор, который будет наилучшим образом аппроксимировать целевую зависимость. В данной статье будет рассмотрены особенности работы оптимизационных алгоритмов (а точнее, учет их вычислительной сложности и точности) при решении задач обучения по прецедентам.

Технический отчет

Подкопаев А. С. Time Complexity of Structural Risk Minimization // Сервер вычислительных экспериментов mvr.jmlda.org

Личные инструменты