Функция распределения
Материал из MachineLearning.
(→Генерация случайной величины, имеющей заданное распределение) |
м (Добавил недостающие скобки в теги) |
||
(4 промежуточные версии не показаны) | |||
Строка 29: | Строка 29: | ||
В частности, вероятность того, что случайная величина <tex>X</tex> примет заданное значение <tex>x</tex>, равна скачку функции распределения в данной точке: | В частности, вероятность того, что случайная величина <tex>X</tex> примет заданное значение <tex>x</tex>, равна скачку функции распределения в данной точке: | ||
- | <center><tex>P(X=x)=\lim_{t\ | + | <center><tex>P(X=x)=\lim_{t\to x+0}F(t)-\lim_{t\to x-0}F(t)</tex>.</center> |
Если функция распределения непрерывна в точке <tex>x</tex>, то вероятность принять данное значение для случайной величины равна нулю. В частности, если функция распределения непрерывна на всей числовой оси (при этом и соответствующее распределение называется '''непрерывным'''), то вероятность принять любое заданное значение равна нулю. | Если функция распределения непрерывна в точке <tex>x</tex>, то вероятность принять данное значение для случайной величины равна нулю. В частности, если функция распределения непрерывна на всей числовой оси (при этом и соответствующее распределение называется '''непрерывным'''), то вероятность принять любое заданное значение равна нулю. | ||
Строка 37: | Строка 37: | ||
<center><tex>P(a\le X < b) = F(b)-F(a)</tex></center> | <center><tex>P(a\le X < b) = F(b)-F(a)</tex></center> | ||
- | С помощью данной формулы и указанного выше способа нахождения вероятности попадания в любую заданную точку, легко определяются вероятности попадания случайной величины в интервалы других типов: <tex>(a,b)</tex>, tex>[a,b]</tex> и tex>(a,b]</tex>. Далее, по теореме о продолжении меры, можно однозначно продолжить меру на все борелевские множества числовой прямой <tex>\mathcal{B}(\mathbb{R})</tex>. Для того, чтобы применить эту теорему, требуется показать, что таким образом определенная на интервалах мера является на них сигма-аддитивной; при доказательстве этого в точности используются свойства 1-4 (в частности, свойство непрерывности слева 4, поэтому отбросить его нельзя). | + | С помощью данной формулы и указанного выше способа нахождения вероятности попадания в любую заданную точку, легко определяются вероятности попадания случайной величины в интервалы других типов: <tex>(a,b)</tex>, <tex>[a,b]</tex> и <tex>(a,b]</tex>. Далее, по теореме о продолжении меры, можно однозначно продолжить меру на все борелевские множества числовой прямой <tex>\mathcal{B}(\mathbb{R})</tex>. Для того, чтобы применить эту теорему, требуется показать, что таким образом определенная на интервалах мера является на них сигма-аддитивной; при доказательстве этого в точности используются свойства 1-4 (в частности, свойство непрерывности слева 4, поэтому отбросить его нельзя). |
==Генерация случайной величины, имеющей заданное распределение== | ==Генерация случайной величины, имеющей заданное распределение== | ||
Строка 51: | Строка 51: | ||
<center><tex>X=F^{-1}(Z)</tex></center> | <center><tex>X=F^{-1}(Z)</tex></center> | ||
- | имеет функцию распределения <tex>F(t)</tex>. Это верно для любых функций распределения (не обязательно непрерывных), однако при этом обратная функция должна быть доопределена в точках разрыва следующим образом (в точках непрерывности это | + | имеет функцию распределения <tex>F(t)</tex>. Это верно для любых функций распределения (не обязательно непрерывных), однако при этом обратная функция должна быть доопределена в точках разрыва следующим образом (в точках непрерывности это определение совпадает с обычным определением обратной функции): |
<center><tex>F^{-1}(z)=\sup\{t:F(t)\le z\}</tex>.</center> | <center><tex>F^{-1}(z)=\sup\{t:F(t)\le z\}</tex>.</center> | ||
Строка 57: | Строка 57: | ||
Данное свойство дает универсальный способ генерации случайной величины, имеющей заданное распределение, с помощью величины, равномерно распределенной на отрезке <tex>[0,1]</tex>. Именно поэтому при построении генераторов псевдослучайных чисел обычно ограничиваются именно этим распределением. | Данное свойство дает универсальный способ генерации случайной величины, имеющей заданное распределение, с помощью величины, равномерно распределенной на отрезке <tex>[0,1]</tex>. Именно поэтому при построении генераторов псевдослучайных чисел обычно ограничиваются именно этим распределением. | ||
+ | ==Литература== | ||
+ | 1. {{книга | ||
+ | |автор = Ширяев А.Н. | ||
+ | |заглавие = Вероятность | ||
+ | |год = 2004 | ||
+ | |место = М. | ||
+ | |издательство = МЦНМО | ||
+ | }} | ||
- | + | [[Категория:Теория вероятностей]] | |
- | [[Категория: | + |
Текущая версия
Содержание |
Определение
Функция распределения случайной величины - это числовая функция, которая имеет вид:
Обозначение используется для того, чтобы подчеркнуть, о какой случайной величине идет речь; если это ясно из контекста, то часто индекс опускают и обозначают функцию распределения просто
Свойства
Функция распределения определена на всей числовой оси и обладает следующими свойствами, вытекающими из свойств вероятностной меры:
1.
2. , .
3. Функция распределения является неубывающей: если , то
4. Функция распределения непрерывна слева: для любого .
Примечание. Последнее свойство обозначает, какие значения принимает функция распределения в точках разрыва. Иногда определение функции распределения формулируют с использованием нестрогого неравенства: . В этом случае непрерывность слева заменяется на непрерывность справа: при . Никакие содержательные свойства функции распределения при этом не меняются, поэтому данный вопрос является лишь терминологическим.
Свойства 1-4 являются характеристическими, т.е. любая функция , удовлетворяющая этим свойствам, является функцией распределения некоторой случайной величины.
Функция распределения задает распределение вероятностей случайной величины однозначно. Фактически, она является универсальным и наиболее наглядным способом описания этого распределения.
Чем сильнее функция распределения растет на заданном интервале числовой оси, тем выше вероятность попадания случайной величины в этот интервал. Если вероятность попадания в интервал равна нулю, то функция распределения на нем постоянна.
В частности, вероятность того, что случайная величина примет заданное значение , равна скачку функции распределения в данной точке:
Если функция распределения непрерывна в точке , то вероятность принять данное значение для случайной величины равна нулю. В частности, если функция распределения непрерывна на всей числовой оси (при этом и соответствующее распределение называется непрерывным), то вероятность принять любое заданное значение равна нулю.
Из определения функции распределения вытекает, что вероятность попадания случайной величины в интервал, замкнутый слева и открытый справа, равна:
С помощью данной формулы и указанного выше способа нахождения вероятности попадания в любую заданную точку, легко определяются вероятности попадания случайной величины в интервалы других типов: , и . Далее, по теореме о продолжении меры, можно однозначно продолжить меру на все борелевские множества числовой прямой . Для того, чтобы применить эту теорему, требуется показать, что таким образом определенная на интервалах мера является на них сигма-аддитивной; при доказательстве этого в точности используются свойства 1-4 (в частности, свойство непрерывности слева 4, поэтому отбросить его нельзя).
Генерация случайной величины, имеющей заданное распределение
Рассмотрим случайную величину , имеющую функцию распределения . Предположим, что непрерывна. Рассмотрим случайную величину
Легко показать, что тогда будет иметь равномерное распределение на отрезке .
Обратно, пусть случайная величина имеет равномерное распределение на отрезке , а - произвольная функция распределения (т.е. удовлетворяет свойствам 1-4). Тогда случайная величина
имеет функцию распределения . Это верно для любых функций распределения (не обязательно непрерывных), однако при этом обратная функция должна быть доопределена в точках разрыва следующим образом (в точках непрерывности это определение совпадает с обычным определением обратной функции):
Данное свойство дает универсальный способ генерации случайной величины, имеющей заданное распределение, с помощью величины, равномерно распределенной на отрезке . Именно поэтому при построении генераторов псевдослучайных чисел обычно ограничиваются именно этим распределением.
Литература
1. Ширяев А.Н. Вероятность. — М.: МЦНМО, 2004.