Участник:Evgeny smirnov

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Отчет о научно-исследовательской работе)
(Отчет о научно-исследовательской работе)
Строка 13: Строка 13:
-
'''Полувероятностная тематическая модель для задачи классификации'''
+
'''Тематическая модель бинарной классификации слов в документах'''
''В работе строится полувероятностная тематическая модель для задачи классификации слов в текстовых документах на основе метода аддитивной регуляризации тематических моделей ARTM с подбором проблемно-ориентированных регуляризаторов. Предложен EM-алгоритм для решения задачи. На основе полученной модели решается задача построения рекомендательной системы для мобильного приложения. Проведён эксперимент на реальных данных мобильного сервиса этого приложения. Сделан вывод о повышении качества рекомендаций сервиса, использующего построенную модель. Новизна заключается в том, что задача классификации слов в текстовых документах сводится к двухматричному разложению вместо трёхматричного.''
''В работе строится полувероятностная тематическая модель для задачи классификации слов в текстовых документах на основе метода аддитивной регуляризации тематических моделей ARTM с подбором проблемно-ориентированных регуляризаторов. Предложен EM-алгоритм для решения задачи. На основе полученной модели решается задача построения рекомендательной системы для мобильного приложения. Проведён эксперимент на реальных данных мобильного сервиса этого приложения. Сделан вывод о повышении качества рекомендаций сервиса, использующего построенную модель. Новизна заключается в том, что задача классификации слов в текстовых документах сводится к двухматричному разложению вместо трёхматричного.''

Версия 18:45, 25 мая 2016

МФТИ, ФУПМ

Кафедра «Интеллектуальные системы»

Направление «Интеллектуальный анализ данных»

evgenii.smirnov@phystech.edu

Отчет о научно-исследовательской работе

Весна 2015, 6-й семестр


Тематическая модель бинарной классификации слов в документах

В работе строится полувероятностная тематическая модель для задачи классификации слов в текстовых документах на основе метода аддитивной регуляризации тематических моделей ARTM с подбором проблемно-ориентированных регуляризаторов. Предложен EM-алгоритм для решения задачи. На основе полученной модели решается задача построения рекомендательной системы для мобильного приложения. Проведён эксперимент на реальных данных мобильного сервиса этого приложения. Сделан вывод о повышении качества рекомендаций сервиса, использующего построенную модель. Новизна заключается в том, что задача классификации слов в текстовых документах сводится к двухматричному разложению вместо трёхматричного.

Публикация Смирнов Е.А. Воронцов К.В. Полувероятностная тематическая модель для задачи классификации // Машинное обучение и анализ данных. — 2015. — ISSN 2223-3792. (готовится к подаче в журнал)

Личные инструменты