Участник:Evgeny smirnov
Материал из MachineLearning.
(→Отчет о научно-исследовательской работе) |
(→Отчет о научно-исследовательской работе) |
||
Строка 13: | Строка 13: | ||
- | ''' | + | '''Тематическая модель бинарной классификации слов в документах''' |
''В работе строится полувероятностная тематическая модель для задачи классификации слов в текстовых документах на основе метода аддитивной регуляризации тематических моделей ARTM с подбором проблемно-ориентированных регуляризаторов. Предложен EM-алгоритм для решения задачи. На основе полученной модели решается задача построения рекомендательной системы для мобильного приложения. Проведён эксперимент на реальных данных мобильного сервиса этого приложения. Сделан вывод о повышении качества рекомендаций сервиса, использующего построенную модель. Новизна заключается в том, что задача классификации слов в текстовых документах сводится к двухматричному разложению вместо трёхматричного.'' | ''В работе строится полувероятностная тематическая модель для задачи классификации слов в текстовых документах на основе метода аддитивной регуляризации тематических моделей ARTM с подбором проблемно-ориентированных регуляризаторов. Предложен EM-алгоритм для решения задачи. На основе полученной модели решается задача построения рекомендательной системы для мобильного приложения. Проведён эксперимент на реальных данных мобильного сервиса этого приложения. Сделан вывод о повышении качества рекомендаций сервиса, использующего построенную модель. Новизна заключается в том, что задача классификации слов в текстовых документах сводится к двухматричному разложению вместо трёхматричного.'' |
Версия 18:45, 25 мая 2016
МФТИ, ФУПМ
Кафедра «Интеллектуальные системы»
Направление «Интеллектуальный анализ данных»
evgenii.smirnov@phystech.edu
Отчет о научно-исследовательской работе
Весна 2015, 6-й семестр
Тематическая модель бинарной классификации слов в документах
В работе строится полувероятностная тематическая модель для задачи классификации слов в текстовых документах на основе метода аддитивной регуляризации тематических моделей ARTM с подбором проблемно-ориентированных регуляризаторов. Предложен EM-алгоритм для решения задачи. На основе полученной модели решается задача построения рекомендательной системы для мобильного приложения. Проведён эксперимент на реальных данных мобильного сервиса этого приложения. Сделан вывод о повышении качества рекомендаций сервиса, использующего построенную модель. Новизна заключается в том, что задача классификации слов в текстовых документах сводится к двухматричному разложению вместо трёхматричного.
Публикация Смирнов Е.А. Воронцов К.В. Полувероятностная тематическая модель для задачи классификации // Машинное обучение и анализ данных. — 2015. — ISSN 2223-3792. (готовится к подаче в журнал)