Коэффициент корреляции Кенделла
Материал из MachineLearning.
Строка 20: | Строка 20: | ||
'''Статистика критерия:''' | '''Статистика критерия:''' | ||
::<tex>\frac{\tau}{\sqrt{D_{\tau}}},</tex> | ::<tex>\frac{\tau}{\sqrt{D_{\tau}}},</tex> | ||
- | |||
где <tex>D_{\tau}=\frac{2(2n+5)}{9n(n-1)}</tex>. | где <tex>D_{\tau}=\frac{2(2n+5)}{9n(n-1)}</tex>. | ||
Версия 21:17, 12 ноября 2008
|
Корреляцию Кенделла также называют мерой взаимной неупорядоченности или рассогласования.
Определение
Заданы две выборки .
Коэффициент корреляции Кенделла, равен
- ,
где [логическое выражение]=1, если логическое выражение верно, иначе, 0, например,
Коэффициент принимает значения от -1 до 1. Равенство указывает на строгую линейную корреляцию.
Статистическая проверка наличия корреляции
Гипотеза : Выборки и не коррелируют.
Статистика критерия:
где .
При статистику критерия можно приблизить нормальным распределением с параметрами (0,1):
Критерий (при уровне значимости ):
- против альтернативы : наличие корреляции
- если , где — -квантиль стандартного нормального распределения.
Связь коэффициента корреляции Кенделла с коэффициентом корреляции Пирсона
В случае выборок из нормального распределения коэффициент корреляции Кенделла может быть использован для оценки коэффициента корреляции Пирсона по формуле
Связь коэффициента корреляции Кенделла с коэффициентом корреляциии Спирмена
Выборкам и соответствуют последовательности рангов:
- , где — ранг -го объекта в вариационном ряду выборки ;
- , где — ранг -го объекта в вариационном ряду выборки .
Проведем операцию упорядочевания рангов.
Расположим ряд значений в порядке возрастания величины: . Тогда последовательность рангов упорядоченной выборки будет представлять собой последовательность натуральных чисел . Значения , соответствующие значениям , образуют в этом случае некоторую последовательность рангов .
- ( — операция упорядочевания рангов).
Коэффициент корреляции Кенделла и коэффициент корреляции Спирмена выражаются через ранги следующим образом:
Коэффициент корреляции Спирмена учитывает насколько сильна неупорядоченность.
Утверждение. Если выборки и не коррелируют (выполняется гипотеза ), то коэффициент корреляции между величинами и можно вычислить по формуле:
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.
См. также
Ссылки
- Коэффициент корреляции(Википедия)
- Корреляционный анализ (Википедия)