Участник:Evgeny smirnov

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Отчет о научно-исследовательской работе)
Текущая версия (21:33, 27 августа 2016) (править) (отменить)
(Отчет о научно-исследовательской работе)
 
(3 промежуточные версии не показаны)
Строка 13: Строка 13:
-
'''Полувероятностная тематическая модель для задачи классификации'''
+
'''Тематическая модель бинарной классификации слов в документах'''
-
''В работе построена полувероятностная тематическая модель для задачи классификации слов в текстовых документах на основе метода аддитивной регуляризации тематических моделей ARTM с подбором проблемно-ориентированных регуляризаторов. На основе метода предложен EM-алгоритм для решения задачи. Новизна заключается в том, что задача классификации решается используя двухматричное разложение вместо трёхматричного. На основе построенной модели решается задача построения рекомендательной системы для мобильного приложения. Проведён эксперимент на реальных данных мобильного сервиса этого приложения. Сделан вывод о повышении качества рекомендаций сервиса, использующего построенную модель.''
+
''В работе строится полувероятностная тематическая модель для задачи классификации слов в текстовых документах на основе метода аддитивной регуляризации тематических моделей ARTM с подбором проблемно-ориентированных регуляризаторов. Предложен EM-алгоритм для решения задачи. На основе полученной модели решается задача построения рекомендательной системы для мобильного приложения. Проведён эксперимент на реальных данных мобильного сервиса этого приложения. Сделан вывод о повышении качества рекомендаций сервиса, использующего построенную модель. Новизна заключается в том, что задача классификации слов в текстовых документах сводится к двухматричному разложению вместо трёхматричного.''
'''Публикация'''
'''Публикация'''
Смирнов Е.А. Воронцов К.В. Полувероятностная тематическая модель для задачи классификации // ''Машинное обучение и анализ данных.'' — 2015. — ISSN 2223-3792. (готовится к подаче в журнал)
Смирнов Е.А. Воронцов К.В. Полувероятностная тематическая модель для задачи классификации // ''Машинное обучение и анализ данных.'' — 2015. — ISSN 2223-3792. (готовится к подаче в журнал)
 +
 +
 +
<big>'''Весна 2016, 8-й семестр'''</big>
 +
 +
 +
'''Суммаризация тем в вероятностных тематических моделях'''
 +
 +
''Одной из главных проблем вероятностых тематических моделей является их понимание. Все существующие методы оценки интерпретируемости тем основываются на методе описания мешком терминов. В данной работе предлагается подход для оценки интерпретируемости, основанный на анализе сжатого представления коллекции документов. Для этого объявляется набор требований к тематической модели, для того чтобы считать её интерпретируемой. Для интерпретируемой модели формируется суммаризация тем --- список предложений для каждой темы, наиболее точно и полно её описывающий, отранжированный по ценности предложений. В вычислительных экспериментах строится интерпретируемая тематическая модель для коллекции документов конференции ММРО и суммаризация её тем.''
 +
 +
'''Публикация'''
 +
Смирнов Е.А. Воронцов К.В. Суммаризация тем в вероятностных тематических моделях // (готовится к подаче в журнал)
<big>
<big>

Текущая версия

МФТИ, ФУПМ

Кафедра «Интеллектуальные системы»

Направление «Интеллектуальный анализ данных»

evgenii.smirnov@phystech.edu

Отчет о научно-исследовательской работе

Весна 2015, 6-й семестр


Тематическая модель бинарной классификации слов в документах

В работе строится полувероятностная тематическая модель для задачи классификации слов в текстовых документах на основе метода аддитивной регуляризации тематических моделей ARTM с подбором проблемно-ориентированных регуляризаторов. Предложен EM-алгоритм для решения задачи. На основе полученной модели решается задача построения рекомендательной системы для мобильного приложения. Проведён эксперимент на реальных данных мобильного сервиса этого приложения. Сделан вывод о повышении качества рекомендаций сервиса, использующего построенную модель. Новизна заключается в том, что задача классификации слов в текстовых документах сводится к двухматричному разложению вместо трёхматричного.

Публикация Смирнов Е.А. Воронцов К.В. Полувероятностная тематическая модель для задачи классификации // Машинное обучение и анализ данных. — 2015. — ISSN 2223-3792. (готовится к подаче в журнал)


Весна 2016, 8-й семестр


Суммаризация тем в вероятностных тематических моделях

Одной из главных проблем вероятностых тематических моделей является их понимание. Все существующие методы оценки интерпретируемости тем основываются на методе описания мешком терминов. В данной работе предлагается подход для оценки интерпретируемости, основанный на анализе сжатого представления коллекции документов. Для этого объявляется набор требований к тематической модели, для того чтобы считать её интерпретируемой. Для интерпретируемой модели формируется суммаризация тем --- список предложений для каждой темы, наиболее точно и полно её описывающий, отранжированный по ценности предложений. В вычислительных экспериментах строится интерпретируемая тематическая модель для коллекции документов конференции ММРО и суммаризация её тем.

Публикация Смирнов Е.А. Воронцов К.В. Суммаризация тем в вероятностных тематических моделях // (готовится к подаче в журнал)

Личные инструменты