Коэффициент корреляции Пирсона
Материал из MachineLearning.
(Различия между версиями)
(→Определение) |
м (→Ссылки) |
||
Строка 60: | Строка 60: | ||
== Ссылки == | == Ссылки == | ||
+ | * [http://en.wikipedia.org/wiki/Correlation Корреляция (en.wiki)] | ||
+ | |||
* [http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7 Корреляционный анализ] | * [http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7 Корреляционный анализ] | ||
Версия 21:57, 18 ноября 2008
|
Статья в настоящий момент дорабатывается. Венжега Андрей 21:51, 13 ноября 2008 (MSK) |
Определение
Коэффициент корреляции Пирсона характеризует существование линейной зависимости между двумя величинами.
Даны две выборки
;
Коэффициент корреляции Пирсена рассчитывается по формуле:
где
- средние значения выборок x и y;
- среднеквадратичные отклонения;
− называют также теснотой линейной связи.
- , тогда - линейно зависимы.
- , тогда - линейно независимы.
Статистическая проверка наличия корреляции
Гипотеза : Отсутствие линейной связи
Статистика критерия:
- Распределение Стьюдента с степенями свободы.
Слабые стороны
- Неустойчивость к выбросам;
- С помощью коэффициента корреляции можно определить линейную зависимость между величинами, другие взаимосвязи выявляются методами регрессионного анализа;
- Необходимо понимать различие понятий "независимость" и "некоррелированность". Из первого следует второе, но не наоборот. Для того, чтобы выяснить отношение между двумя переменными, необходимо избавиться от влияния третьей переменной. Рассмотрим пример 3-х переменных: x,y,z. Исключим влияние переменной z:
Для исключения влияния большего числа переменных:
, где - гл. минор матрицы коэффициентов корреляции переменных ;