Стандартизация задач с помощью замены переменных
Материал из MachineLearning.
м («Трюки с заменой переменных для стандартизации задач» переименована в «Стандартизация задач с помощью замены переменных») |
(→Формула замены переменных в определенном интеграле) |
||
Строка 86: | Строка 86: | ||
==Формула замены переменных в определенном интеграле == | ==Формула замены переменных в определенном интеграле == | ||
+ | |||
+ | '''Теорема.''' | ||
+ | |||
+ | Пусть функция <tex> f(x) </tex> непрерывна на отрезке <tex> [a'; b'] </tex> , а функция <tex> \phi(t) </tex> имеет непрерывную производную <tex> \phi'(t) </tex> на отрезке <tex> [\alpha; \beta] </tex>, причём все значения <tex> x = \phi(t) </tex> при <tex> [t \in{\alpha};{\beta}] </tex> принадлежат отрезку <tex> [a'; b'] </tex>, в том числе <tex> \phi(\alpha) = a </tex> и <tex> \phi(\beta) = b </tex>. Тогда имеет место равенство | ||
+ | |||
+ | <p align = "center"> | ||
+ | [[Изображение:Img1.png]] </p> | ||
+ | |||
+ | '''Замечание.''' | ||
+ | |||
+ | Заметим, что доказанная формула, в отличие от формулы замены переменной в неопределённом интеграле, даёт нам возможность после перехода к интегралу от функции новой переменной <tex> x </tex> не возвращаться к исходному интегралу от функции переменной <tex> t </tex>. После того, как замена сделана, мы можем "забыть", как выглядел исходный интеграл, и продолжать преобразования интеграла от функции новой переменной. Именно на том, что к старой переменной возвращаться не приходится, мы и получаем экономию усилий при применении формулы замены переменной в определённом интеграле, по сравнению с тем, что получилось бы, если бы мы просто нашли первообразную и применили формулу Ньютона - Лейбница. | ||
+ | |||
+ | Обратим ваше внимание на важную особенность формулы: кроме подынтегрального выражения, при замене переменной меняются и пределы интегрирования. Действительно, в интеграле по новой переменной <tex> x </tex> должны быть указаны пределы изменения именно <tex> x </tex> (то есть <tex> a </tex> и <tex> b </tex>), в то время как в исходном интеграле по переменной <tex> t </tex> указаны пределы изменения <tex> t </tex> (то есть <tex> \alpha </tex> и <tex> \beta </tex>). | ||
+ | |||
+ | Советы о том, какая замена целесообразна для вычисления того или иного интеграла, - те же самые, что и при вычислении неопределённых интегралов, так что тут ничего нового изучать не придётся. | ||
+ | |||
+ | '''Пример.''' | ||
+ | |||
+ | Вычислим интеграл | ||
+ | |||
+ | ::[[Изображение:Img2.png]] | ||
+ | |||
+ | Для этого сделаем замену <tex> x = \phi(t) = \sin t </tex>, откуда <tex> dx = \phi'(t)dt = \cos t dt</tex>. Кроме того, при <tex> t = 0 </tex> имеем <tex> x = \sin 0 = 0 </tex>, а при <tex> t = \frac{\pi}{2} </tex> имеем <tex> x = \sin \frac{\pi}{2} = 1 </tex>. Получаем: | ||
+ | |||
+ | ::[[Изображение:Img2.png]] | ||
=== Квадратурные формулы интерполяционного типа === | === Квадратурные формулы интерполяционного типа === | ||
Версия 18:45, 23 ноября 2008
Содержание |
Введение
Формула замены переменных в неопределенном интеграле
Рассмотрим свойство неопределенного интеграла, часто оказывающееся полезным при вычислении первообразных элементарных функций.
Теорема.
Пусть функции и определены соответственно на промежутках и , причем . Если функция имеет на первообразную и, следовательно,
а функция дифференцируема на , то функция имеет на , первообразную и
Формула (1) называется формулой интегрирования подстановкой, а именно подстановкой . Это название объясняется тем, что если формулу (2) записать в виде
то будет видно, что, для того чтобы вычислить интеграл ), можно сделать подстановку , вычислить интеграл и затем вернуться к переменной , положив .
Примеры.
1. Для вычисления интеграла естественно сделать подстановку , тогда
2. Для вычисления интеграла удобно применить подстановку :
3. При вычислении интегралов вида полезна подстановка :
Например,
Иногда, прежде чем применить метод интегрирования подстановкой, приходится проделать более сложные преобразования подынтегральной функции:
Отметим, что формулу (2) бывает целесообразно использовать и в обратном порядке, т.е. справа палево. Именно, иногда удобно вычисление интеграла с помощью соответствующей замены переменного свести к вычислению интеграла (если этот интеграл в каком-то смысле «проще» исходного).
В случае, когда функция имеет обратную , перейдя в обеих частях формулы (2) к переменной с помощью подстановки и поменяв местами стороны равенства, получим
Эта формула называется обычно формулой интегрирования заменой переменной.
Для того чтобы существовала функция , обратная , в дополнение к условиям теоремы достаточно, например, потребовать, чтобы на рассматриваемом промежутке функция была строго монотонной. В этом случае, существует однозначная обратная функция .
4. Интегралы вида в том случае, когда подкоренное выражение неотрицательно на некотором промежутке, легко сводятся с помощью заме¬ны переменного к табличным.
Действительно, замечая, что , сделаем замену переменной и положим . Тогда и, в силу формулы (2), получим
(перед стоит знак плюс, если а > 0, и знак минус, если а < 0). Интеграл, стоящий в правой части равенства, является табличным. Найдя его по соответствующим формулам и вернувшись от переменной к переменной , получим искомый интеграл.
Подобным же приемом вычисляются и интегралы вида
5. Интеграл можно вычислить с помощью подстановки . Имеем , поэтому
Подставляя это выражение и замечая, что
окончательно будем иметь
Заметим, что для проверки результата, полученного при вычислении неопределенного интеграла, достаточно его продифференцировать, после чего должно получиться подынтегральное выражение вычисляемого иптеграла.
Формула замены переменных в определенном интеграле
Теорема.
Пусть функция непрерывна на отрезке , а функция имеет непрерывную производную на отрезке , причём все значения при принадлежат отрезку , в том числе и . Тогда имеет место равенство
Замечание.
Заметим, что доказанная формула, в отличие от формулы замены переменной в неопределённом интеграле, даёт нам возможность после перехода к интегралу от функции новой переменной не возвращаться к исходному интегралу от функции переменной . После того, как замена сделана, мы можем "забыть", как выглядел исходный интеграл, и продолжать преобразования интеграла от функции новой переменной. Именно на том, что к старой переменной возвращаться не приходится, мы и получаем экономию усилий при применении формулы замены переменной в определённом интеграле, по сравнению с тем, что получилось бы, если бы мы просто нашли первообразную и применили формулу Ньютона - Лейбница.
Обратим ваше внимание на важную особенность формулы: кроме подынтегрального выражения, при замене переменной меняются и пределы интегрирования. Действительно, в интеграле по новой переменной должны быть указаны пределы изменения именно (то есть и ), в то время как в исходном интеграле по переменной указаны пределы изменения (то есть и ).
Советы о том, какая замена целесообразна для вычисления того или иного интеграла, - те же самые, что и при вычислении неопределённых интегралов, так что тут ничего нового изучать не придётся.
Пример.
Вычислим интеграл
Для этого сделаем замену , откуда . Кроме того, при имеем , а при имеем . Получаем:
Квадратурные формулы интерполяционного типа
Формула замены переменных в кратном интеграле
Сведения об интегралах с бесконечными пределами
Соотношение равномощности
Заключение
Литература
- Л.Д. Кудрявцев. Курс математического анализа в 3 томах.
- З.И. Гурова, С.Н. Каролинская, А.П. Осипова. Математический анализ. Начальный курс с примерами и задачами.
- А.А. Самарский, А.В. Гулин. Численные методы М.: Наука, 1989.
- http://de.ifmo.ru/bk_netra/page.php?index=42&layer=1&tutindex=21#2
- http://sesia5.ru/vmat/gl5/21.html