Метод простых итераций
Материал из MachineLearning.
Строка 8: | Строка 8: | ||
Метод сходится, если при <tex>k \to \infty </tex> последовательность {<tex>x_n</tex>} имеет предел.<br> | Метод сходится, если при <tex>k \to \infty </tex> последовательность {<tex>x_n</tex>} имеет предел.<br> | ||
Обозначим <tex>U_r(a)</tex> окресность точки <tex>a</tex> радиуса <tex>r</tex>, то есть <tex>U_r(a) = \{x:|x-a|<r\}</tex>.<br> | Обозначим <tex>U_r(a)</tex> окресность точки <tex>a</tex> радиуса <tex>r</tex>, то есть <tex>U_r(a) = \{x:|x-a|<r\}</tex>.<br> | ||
- | '''Теорема.''' Если <tex>g(x)</tex> липшиц-непрерывна с константой <tex>q \in (0,1)</tex> на <tex>U_r(a)</tex>, то есть выполняется | + | '''Теорема 1.''' Если <tex>g(x)</tex> липшиц-непрерывна с константой <tex>q \in (0,1)</tex> на <tex>U_r(a)</tex>, то есть выполняется |
<center><tex>|g(x'')-g(x')|<q|x''-x'|</tex>,</center> | <center><tex>|g(x'')-g(x')|<q|x''-x'|</tex>,</center> | ||
при этом если также выполнено | при этом если также выполнено | ||
Строка 45: | Строка 45: | ||
<center><tex>c = \frac{2}{M_1+m_1}</tex> </center> | <center><tex>c = \frac{2}{M_1+m_1}</tex> </center> | ||
===Ускорение сходимости=== | ===Ускорение сходимости=== | ||
- | Как следует из Теоремы, метод простых итераций линеен, то есть | + | Как следует из '''Теоремы 1''', метод простых итераций линеен, то есть |
<center><tex>x_n-x_* \approx aq^n</tex> </center> | <center><tex>x_n-x_* \approx aq^n</tex> </center> | ||
Воспользуемся этим для оценки погрешности на каждой итерации. Запомним 3 последние итерации и выпишем их оценки: | Воспользуемся этим для оценки погрешности на каждой итерации. Запомним 3 последние итерации и выпишем их оценки: |
Версия 15:54, 24 ноября 2008
Содержание |
Постановка задачи
Пусть есть функция .
Требуется найти корень этой функции: такой при котором
Решение необходимо найти численно, то есть для реализации на ЭВМ. Для решения этой задачи предлагается использовать метод простых итераций.
Метод простых итераций в общем виде
Заменим исходное уравнение на эквивалентное ,и будем строить итерации по правилу . Таким образом метод простой итерации - это одношаговый итерационный процесс. Для того, что бы начать данный процесс, необходимо знать начальное приближение . Выясним условия сходимости метода и выбор начального приближения.
Сходимость метода простых итераций
Метод сходится, если при последовательность {} имеет предел.
Обозначим окресность точки радиуса , то есть .
Теорема 1. Если липшиц-непрерывна с константой на , то есть выполняется
при этом если также выполнено
где - точное решение.
Из оценки видно, что метод линеен.
Пусть непрерывно дифференцируема на , тогда из теоремы вытекают следующие утверждения:
Следствие 1. Если для , выполнено , и , тогда уравнение имеет единственное решение на и метод простой итерации сходится к решению.
Следствие 2. Если уравнение имеет решение , непрерывно дифференцируема на и . Тогда существует такое, что на уравнение не имеет других решений и метод простой итерации сходится к решению при
Метод релаксации
Так как для сходимости метода очень важен выбор функции , ее обычно берут видаГде не меняет знака на отрезке, на котором ищется корень функции.
Положим и рассмотрим метод в этом случае.
Тогда получим метод 'релаксации':
для которого , и метод сходится при условии
Пусть в некоторой окресности корня выполняются условия
Тогда метод релаксации сходится при
Выбор параметра
Оценим погрешность метода релаксации
Применяя теорему о среднем получаем
Отсюда
Следовательно
Таким образом задача сводится к нахождению минимума функции
Из рассмотрения графика функции видно, что точка минимума определяется
и равна
Ускорение сходимости
Как следует из Теоремы 1, метод простых итераций линеен, то есть
Воспользуемся этим для оценки погрешности на каждой итерации. Запомним 3 последние итерации и выпишем их оценки:
Где нам известны (вычисленны по какому то линейному алгоритму),а найдем из системы. Получим:
Метод ускорения сходимости заключается в том, что после вычисления 3 приближений по линейно сходящемуся алгоритму, вычисляется новое приближение по уточняющему правилу (2).
Применительно к методу релаксации имеем:
Следовательно
Можно показать, что данный метод имеет уже квадратичную скорость сходимости.
Метод Вегстейна
Метод Вегстейна, вообще говоря, является модификацией метода секущих, однако его можно назвать и улучшенным методом простой итерации, преобразовав вычислительню формулу
к виду
Это двухшаговый метод, и для начала вычислений необходимо задать 2 приближения .
Программная реализация
Все методы были реализованы на языке C++. Доступ к методам осуществяется через класс
PowerIterationMethod
пример кода:
PowerIterationMethod::PowerIterationParams *params = new PowerIterationMethod::PowerIterationParams ( f1 // Исходная функция ,s1 // Функция s(x) в формусле (1) или константа в методе релаксации ,1 // Начальное приближение ,0 // Второе приближение для метода Вегстейна ,0 // Допустимая погрешность решения ,1000 // Максимальное количество итераций ); PowerIterationMethod *method = new PowerIterationMethod (params); method->simpleIteration (); // Вычисление по методу простой итерации printf ("%f\n",method->getResult ()); printf ("%f",method->getEps ());
Числовые примеры
Заключение
Ссылки
Список литературы
- А.А.Самарский, А.В.Гулин. Численные методы. Москва «Наука», 1989.
- Н.Н.Калиткин. Численные методы. Москва «Наука», 1978.