Стандартизация задач с помощью замены переменных
Материал из MachineLearning.
(Новая: == Введение == == Формула замены переменных в неопределенном интеграле == == Формула замены переменных в о...) |
(→Заключение) |
||
(11 промежуточных версий не показаны.) | |||
Строка 1: | Строка 1: | ||
== Введение == | == Введение == | ||
+ | |||
+ | Задача интегрирования функций значительно сложнее задачи дифференцирования. Здесь отсутствуют правила интегрирования произведения и частного двух функций, сложной и обратной функций. Имеются лишь некоторый приемы, позволяющие интегрировать отдельные классы функций. Методы замены переменных позволяют свести исходный интеграл к более простому с помощью перехода от старой переменной интегрирования к новой. | ||
+ | |||
== Формула замены переменных в неопределенном интеграле == | == Формула замены переменных в неопределенном интеграле == | ||
- | == Формула замены переменных в определенном интеграле == | + | Рассмотрим свойство неопределенного интеграла, часто оказывающееся полезным при вычислении первообразных элементарных функций. |
+ | |||
+ | '''Теорема.''' | ||
+ | |||
+ | Пусть функции <tex> f(x)</tex> и <tex> \phi(x) </tex> определены соответственно на промежутках <tex> \Delta_x </tex> и <tex> \Delta_y </tex>, причем <tex> \phi(\Delta_t) \subset \Delta_x </tex>. Если функция <tex> f </tex> имеет на <tex> \Delta_x </tex> первообразную <tex> F{x)</tex> и, следовательно, | ||
+ | <p align = "center"> | ||
+ | [[Изображение:Q1.jpg]] (1) </p> | ||
+ | |||
+ | а функция <tex> \phi(x) </tex> дифференцируема на <tex> \Delta_t </tex>, то функция | ||
+ | <tex> f(\phi(t))\phi^,(t) </tex> имеет на <tex> \Delta_t </tex>, первообразную <tex> F(\phi(t)) </tex> и | ||
+ | <p align = "center"> | ||
+ | [[Изображение:Q2.png]] (2) </p> | ||
+ | |||
+ | |||
+ | Формула {{eqref|1}} называется формулой интегрирования подстановкой, а именно подстановкой <tex> \phi(t) = x </tex>. Это название объясняется тем, что если формулу {{eqref|2}} записать в виде | ||
+ | |||
+ | ::[[Изображение:Q3.png]] | ||
+ | |||
+ | то будет видно, что, для того чтобы вычислить интеграл [[Изображение:Q4.png]]), можно сделать подстановку <tex> x = \phi(t) </tex>, вычислить интеграл <tex> \int f(x) dx </tex> и затем вернуться к переменной <tex> t </tex>, положив <tex> x = \phi(t) </tex>. | ||
+ | |||
+ | |||
+ | '''Примеры.''' | ||
+ | |||
+ | '''1.''' Для вычисления интеграла <tex> \int cos ax dx </tex> естественно сделать подстановку <tex> u = ax </tex>, тогда | ||
+ | |||
+ | ::[[Изображение:Q5.png]] | ||
+ | |||
+ | '''2.''' Для вычисления интеграла [[Изображение:Q6.png]] удобно применить подстановку | ||
+ | <tex> u = x^3 + a^3 </tex>: | ||
+ | |||
+ | ::[[Изображение:Q7.png]] | ||
+ | |||
+ | '''3.''' При вычислении интегралов вида [[Изображение:Q8.png]] полезна подстановка | ||
+ | <tex> u = \phi(x) </tex>: | ||
+ | |||
+ | ::[[Изображение:Q9.png]] | ||
+ | Например, | ||
+ | ::[[Изображение:Q10.png]] | ||
+ | |||
+ | Иногда, прежде чем применить метод интегрирования подстановкой, приходится проделать более сложные преобразования подынтегральной функции: | ||
+ | |||
+ | ::[[Изображение:Q11.png]] | ||
+ | |||
+ | Отметим, что формулу {{eqref|2}} бывает целесообразно использовать и в обратном порядке, т.е. справа палево. Именно, иногда удобно вычисление интеграла <tex> \int f(x) dx </tex> с помощью соответствующей замены переменного <tex> x = \phi(t) </tex> свести к вычислению интеграла [[Изображение:Q12.png]] (если этот интеграл в каком-то смысле «проще» исходного). | ||
+ | |||
+ | В случае, когда функция <tex> \phi </tex> имеет обратную <tex> \phi^{-1} </tex>, перейдя в обеих частях формулы {{eqref|2}} к переменной <tex> x </tex> с помощью подстановки <tex> t = \phi^{-1}(x) </tex> и поменяв местами стороны равенства, получим | ||
+ | |||
+ | ::[[Изображение:Q13.png]] | ||
+ | |||
+ | Эта формула называется обычно ''формулой интегрирования заменой переменной''. | ||
+ | |||
+ | Для того чтобы существовала функция <tex> \phi^{-1} </tex>, обратная <tex> \phi </tex>, в дополнение к условиям теоремы достаточно, например, потребовать, чтобы на рассматриваемом промежутке <tex> \Delta_t </tex> функция <tex> \phi </tex> была строго монотонной. В этом случае, существует однозначная обратная функция <tex> \phi^{-1} </tex>. | ||
+ | |||
+ | '''4.''' Интегралы вида [[Изображение:Q14.png]] в том случае, когда подкоренное выражение неотрицательно на некотором промежутке, легко сводятся с помощью заме¬ны переменного к табличным. | ||
+ | |||
+ | Действительно, замечая, что [[Изображение:Q15.png]], сделаем замену переменной [[Изображение:Q16.png]] и положим [[Изображение:Q17.png]]. Тогда [[Изображение:Q18.png]] и, в силу формулы {{eqref|2}}, получим | ||
+ | |||
+ | ::[[Изображение:Q19.png]] | ||
+ | |||
+ | (перед <tex> t^2 </tex> стоит знак плюс, если а > 0, и знак минус, если а < 0). Интеграл, стоящий в правой части равенства, является табличным. Найдя его по соответствующим формулам и вернувшись от переменной <tex> t </tex> к переменной <tex> x </tex>, получим искомый интеграл. | ||
+ | |||
+ | Подобным же приемом вычисляются и интегралы вида | ||
+ | |||
+ | ::[[Изображение:Q20.png]] | ||
+ | |||
+ | '''5.''' Интеграл [[Изображение:Q21.png]] можно вычислить с помощью подстановки | ||
+ | <tex> x = a sin t </tex>. Имеем <tex> dx = a cos t dt </tex>, поэтому | ||
+ | |||
+ | ::[[Изображение:Q22.png]] | ||
+ | |||
+ | Подставляя это выражение <tex> t = arcsin \frac{x}{a} </tex> и замечая, что | ||
+ | |||
+ | ::[[Изображение:Q23.png]] | ||
+ | |||
+ | окончательно будем иметь | ||
+ | |||
+ | ::[[Изображение:Q24.png]] | ||
+ | |||
+ | Заметим, что для проверки результата, полученного при вычислении неопределенного интеграла, достаточно его продифференцировать, после чего должно получиться подынтегральное выражение вычисляемого иптеграла. | ||
+ | |||
+ | ==Формула замены переменных в определенном интеграле == | ||
+ | |||
+ | '''Теорема.''' | ||
+ | |||
+ | Пусть функция <tex> f(x) </tex> непрерывна на отрезке <tex> [a'; b'] </tex> , а функция <tex> \phi(t) </tex> имеет непрерывную производную <tex> \phi'(t) </tex> на отрезке <tex> [\alpha; \beta] </tex>, причём все значения <tex> x = \phi(t) </tex> при <tex> [t \in{\alpha};{\beta}] </tex> принадлежат отрезку <tex> [a'; b'] </tex>, в том числе <tex> \phi(\alpha) = a </tex> и <tex> \phi(\beta) = b </tex>. Тогда имеет место равенство | ||
+ | |||
+ | <p align = "center"> | ||
+ | [[Изображение:Img1.png]] </p> | ||
+ | |||
+ | '''Замечание.''' | ||
+ | |||
+ | Заметим, что доказанная формула, в отличие от формулы замены переменной в неопределённом интеграле, даёт нам возможность после перехода к интегралу от функции новой переменной <tex> x </tex> не возвращаться к исходному интегралу от функции переменной <tex> t </tex>. После того, как замена сделана, мы можем "забыть", как выглядел исходный интеграл, и продолжать преобразования интеграла от функции новой переменной. Именно на том, что к старой переменной возвращаться не приходится, мы и получаем экономию усилий при применении формулы замены переменной в определённом интеграле, по сравнению с тем, что получилось бы, если бы мы просто нашли первообразную и применили формулу Ньютона - Лейбница. | ||
+ | |||
+ | Обратим ваше внимание на важную особенность формулы: кроме подынтегрального выражения, при замене переменной меняются и пределы интегрирования. Действительно, в интеграле по новой переменной <tex> x </tex> должны быть указаны пределы изменения именно <tex> x </tex> (то есть <tex> a </tex> и <tex> b </tex>), в то время как в исходном интеграле по переменной <tex> t </tex> указаны пределы изменения <tex> t </tex> (то есть <tex> \alpha </tex> и <tex> \beta </tex>). | ||
+ | |||
+ | Советы о том, какая замена целесообразна для вычисления того или иного интеграла, - те же самые, что и при вычислении неопределённых интегралов, так что тут ничего нового изучать не придётся. | ||
+ | |||
+ | '''Пример.''' | ||
+ | |||
+ | Вычислим интеграл | ||
+ | |||
+ | ::[[Изображение:Img2.png]] | ||
+ | |||
+ | Для этого сделаем замену <tex> x = \phi(t) = \sin t </tex>, откуда <tex> dx = \phi'(t)dt = \cos t dt</tex>. Кроме того, при <tex> t = 0 </tex> имеем <tex> x = \sin 0 = 0 </tex>, а при <tex> t = \frac{\pi}{2} </tex> имеем <tex> x = \sin \frac{\pi}{2} = 1 </tex>. Получаем: | ||
+ | |||
+ | ::[[Изображение:Img2.png]] | ||
=== Квадратурные формулы интерполяционного типа === | === Квадратурные формулы интерполяционного типа === | ||
+ | |||
+ | Будем рассматривать формулы приближенного вычисления интегралов | ||
+ | |||
+ | ::[[Изображение:W1.png]] (3) | ||
+ | |||
+ | где <tex> p(x) > 0 </tex> — заданная интегрируемая функция (так называемая весовая функция) и <tex> f(x) </tex> — достаточно гладкая функция. Рассматриваемые далее формулы имеют вид | ||
+ | |||
+ | ::[[Изображение:W2.png]] (4) | ||
+ | |||
+ | где <tex> x \in[{a};{b}] </tex> и <tex> c_k </tex> — числа, <tex> k = 0, 1, ..., n </tex>. | ||
+ | |||
+ | Получим квадратурные формулы путем замены <tex> f(x) </tex> интерполяционным многочленом сразу на всем отрезке <tex> [a, b] </tex>. Полученные таким образом формулы называются ''квадратурными формулами интерполяционного типа''. Как правило, точность этих формул возрастает с увеличением числа узлов интерполирования. Формулы прямоугольников, трапеций и Симпсона являются частными случаями квадратурных формул интерполяционного типа, когда <tex> n = 0, 1, 2, p(x) = 1 </tex>. | ||
+ | |||
+ | Получим выражения для коэффициентов квадратурных формул интерполяционного типа. | ||
+ | Пусть на отрезке <tex> [a, b] </tex> заданы узлы интерполирования <tex> x_k, k = 0, 1, ... n </tex>. Предполагается, что среди этих узлов нет совпадающих, в остальном они могут быть расположены как угодно на <tex> [a, b] </tex>. | ||
+ | |||
+ | Заменяя в интеграле {{eqref|3}} функцию <tex> f(x) </tex> интерполяционным многочленом Лагранжа | ||
+ | |||
+ | ::[[Изображение:W3.png]] | ||
+ | |||
+ | получим приближенную формулу {{eqref|4}}, где | ||
+ | |||
+ | ::[[Изображение:W4.png]] (5) | ||
+ | |||
+ | Таким образом, формула {{eqref|4}} является квадратурной формулой интерполяционного типа тогда и только тогда, когда ее коэффициенты вычисляются по правилу {{eqref|5}}. | ||
+ | |||
== Формула замены переменных в кратном интеграле == | == Формула замены переменных в кратном интеграле == | ||
+ | |||
+ | Пусть <tex> F </tex> — непрерывно дифференцируемое взаимпо-однозпачное отображение открытого множества <tex> G \subset R_{x}^{n} </tex> в пространство <tex> R_{y}^{n} </tex> и его якобиан <tex> J_{F} </tex> не обращается в нуль на множестве <tex> G </tex>. | ||
+ | |||
+ | '''Теорема.''' | ||
+ | |||
+ | Если <tex> E </tex> — измеримое множество, содержащееся вместе со своим замыканием <tex> \bar{E} </tex> в открытом множестве <tex> G </tex>: <tex> E \subset \bar{E} \subset G </tex>, а функция <tex> f </tex> непрерывна на множестве <tex> \bar{F(E)} </tex>, то | ||
+ | |||
+ | <p align = "center"> | ||
+ | [[Изображение:A1.png]] (6) </p> | ||
+ | |||
+ | Эта формула равносильна формуле | ||
+ | |||
+ | <p align = "center"> | ||
+ | [[Изображение:A2.png]] (7) </p> | ||
+ | |||
+ | Действительно, ограниченная функция одновременно интегрируема или нет как на измеримом множестве, так и на его замыкании, причем в случае интегрируемости интегралы от функции по множеству и по его замыканию совпадают. | ||
+ | |||
+ | В нашем случае функции <tex> f(y) </tex> и [[Изображение:A3.png]] непрерывны соответственно на компактах <tex> \bar{F(E)} </tex> и <tex> \bar{E} </tex> (являющихся замыканием измеримых множеств <tex> F(E) </tex> и <tex> E </tex>), следовательно, ограничены и интегрируемы на них. | ||
+ | |||
+ | Таким образом, все входящие в формулы {{eqref|6}} и {{eqref|7}} интегралы существуют, а сами эти формулы равносильны. Эти формулы называются ''формулами замены переменных в кратном интеграле''. | ||
+ | |||
+ | Замена переменных в кратном интеграле часто существенно упрощает его исследование и вычисление. При этом в отличие от однократного интеграла нередко целью замены переменного является не упрощение подынтегральной функции, а переход к более простой области интегрирования даже ценой некоторого усложнения подынтегральной функции. | ||
+ | |||
+ | В качестве примера применения формулы замены переменных в кратном интеграле рассмотрим для двумерного интеграла случай перехода от декартовых координат к полярным. | ||
+ | |||
+ | Рассмотрим плоскость, на которой декартовы координаты обозначены <tex> r </tex>, <tex> \varphi </tex> и на ней открытый прямоугольник | ||
+ | |||
+ | ::[[Изображение:A4.png]] | ||
+ | |||
+ | При отображении | ||
+ | |||
+ | ::[[Изображение:A5.png]] (8) | ||
+ | |||
+ | прямоугольник <tex> G </tex> отображается на множество <tex> G </tex> плоскости с декартовыми координатами <tex> x, y </tex>, которое представляет собой круг [[Изображение:A6.png]], из которого удален радиус [[Изображение:A7.png]]. | ||
+ | |||
+ | Отображение {{eqref|8}} и его якобиан | ||
+ | |||
+ | ::[[Изображение:A8.png]] | ||
+ | |||
+ | непрерывно продолжаемы на замкнутый прямоугольник | ||
+ | |||
+ | ::[[Изображение:A9.png]] | ||
+ | |||
+ | образом которого при продолженном отображении является замкнутый круг <tex> G </tex>, на котором | ||
+ | отображение {{eqref|8}} уже не является взаимно-однозначным: взаимная однозначность нарушается на границе прямоугольника <tex> G </tex> — отрезки [[Изображение:A10.png]] при <tex> \varphi = 0 </tex> и <tex> \varphi = 2 \pi </tex> отображаются в один и тот же отрезок [[Изображение:A10.png]], <tex> y = 0 </tex>, а отрезок [[Изображение:A11.png]]и вовсе отображается в точку (0, 0). Якобиан продолженного отображения обращается в нуль при <tex> r = 0 </tex>. | ||
+ | |||
+ | <p align = "center"> | ||
+ | [[Изображение:A15.png]] </p> | ||
+ | |||
+ | Для отображения {{eqref|8}} и непрерывной на круге [[Изображение:A12.png]] функции <tex> f(x)(y) </tex> имеет место формула | ||
+ | |||
+ | ::[[Изображение:A13.png]] | ||
+ | |||
+ | Приведем конкретный пример вычисления интеграла по этой формуле: | ||
+ | |||
+ | ::[[Изображение:A14.png]] | ||
+ | |||
== Сведения об интегралах с бесконечными пределами == | == Сведения об интегралах с бесконечными пределами == | ||
- | == | + | |
- | + | '''Определение.''' | |
+ | |||
+ | Пусть функция <tex> f(x) </tex> непрерывна на бесконечном промежутке <tex> [a, \infty) </tex>. ''Несобственным интегралом'' от функции <tex> f(x) </tex> на промежутке <tex> [a, \infty) </tex> называется предел [[Изображение:Z1.png]] | ||
+ | и обозначается | ||
+ | |||
+ | ::[[Изображение:Z2.png]] | ||
+ | |||
+ | '''Определение.''' | ||
+ | |||
+ | Пусть функция <tex> f(x) </tex> непрерывна на бесконечном промежутке <tex> (-\infty, b) </tex>. ''Несобственным интегралом'' от функции f(x) на промежутке <tex> (-\infty, b) </tex> называется предел [[Изображение:Z3.png]] | ||
+ | и обозначается | ||
+ | |||
+ | ::[[Изображение:Z4.png]] | ||
+ | |||
+ | '''Определение.''' | ||
+ | |||
+ | Пусть функция <tex> f(x) </tex> непрерывна на всей числовой оси. Несобственный интеграл от функции <tex> f(x) </tex> на бесконечном промежутке <tex> (-\infty, +\infty) </tex> определяется равенством | ||
+ | |||
+ | ::[[Изображение:Z5.png]] | ||
+ | |||
+ | где <tex> c </tex> — любое число на оси <tex> Ox </tex>. | ||
+ | |||
+ | Из определений следует, что сходящиеся несобственные интегралы с бесконечными пределами интегрирования являются конечными пределами определенных интегралов с переменными верхним или нижним пределами при стремлении этих пределов к бесконечности. | ||
+ | |||
+ | Пусть функция <tex> f(x) </tex> непрерывна и неотрицательна на бесконечном промежутке <tex> [a, \infty) </tex>. Известно, что интеграл <tex> \int_{a}^{b} f(x) dx </tex> численно равен площади криволинейной трапеции, ограниченной снизу отрезком <tex> [a, b] </tex> оси <tex> Ox </tex>, сверху — кривой <tex> y = f(x) </tex>, слева и справа — прямыми <tex> x = a </tex> и <tex> x = b </tex>. При возрастании <tex> b </tex> прямая <tex> x = b </tex> перемещается вправо вдоль оси <tex> Ox </tex>. Если при этом интеграл <tex> \int_{a}^{+\infty} f(x) dx </tex> сходится, то его величину принимают за площадь бесконечной трапеции, ограниченной снизу осью <tex> Ox </tex>, сверху — графиком функции <tex> y = f(x) </tex>, слева — прямой <tex> x = a </tex>. | ||
+ | |||
+ | ::[[Изображение:Z6.png]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
== Литература == | == Литература == |
Текущая версия
Содержание |
Введение
Задача интегрирования функций значительно сложнее задачи дифференцирования. Здесь отсутствуют правила интегрирования произведения и частного двух функций, сложной и обратной функций. Имеются лишь некоторый приемы, позволяющие интегрировать отдельные классы функций. Методы замены переменных позволяют свести исходный интеграл к более простому с помощью перехода от старой переменной интегрирования к новой.
Формула замены переменных в неопределенном интеграле
Рассмотрим свойство неопределенного интеграла, часто оказывающееся полезным при вычислении первообразных элементарных функций.
Теорема.
Пусть функции и определены соответственно на промежутках и , причем . Если функция имеет на первообразную и, следовательно,
а функция дифференцируема на , то функция имеет на , первообразную и
Формула (1) называется формулой интегрирования подстановкой, а именно подстановкой . Это название объясняется тем, что если формулу (2) записать в виде
то будет видно, что, для того чтобы вычислить интеграл ), можно сделать подстановку , вычислить интеграл и затем вернуться к переменной , положив .
Примеры.
1. Для вычисления интеграла естественно сделать подстановку , тогда
2. Для вычисления интеграла удобно применить подстановку :
3. При вычислении интегралов вида полезна подстановка :
Например,
Иногда, прежде чем применить метод интегрирования подстановкой, приходится проделать более сложные преобразования подынтегральной функции:
Отметим, что формулу (2) бывает целесообразно использовать и в обратном порядке, т.е. справа палево. Именно, иногда удобно вычисление интеграла с помощью соответствующей замены переменного свести к вычислению интеграла (если этот интеграл в каком-то смысле «проще» исходного).
В случае, когда функция имеет обратную , перейдя в обеих частях формулы (2) к переменной с помощью подстановки и поменяв местами стороны равенства, получим
Эта формула называется обычно формулой интегрирования заменой переменной.
Для того чтобы существовала функция , обратная , в дополнение к условиям теоремы достаточно, например, потребовать, чтобы на рассматриваемом промежутке функция была строго монотонной. В этом случае, существует однозначная обратная функция .
4. Интегралы вида в том случае, когда подкоренное выражение неотрицательно на некотором промежутке, легко сводятся с помощью заме¬ны переменного к табличным.
Действительно, замечая, что , сделаем замену переменной и положим . Тогда и, в силу формулы (2), получим
(перед стоит знак плюс, если а > 0, и знак минус, если а < 0). Интеграл, стоящий в правой части равенства, является табличным. Найдя его по соответствующим формулам и вернувшись от переменной к переменной , получим искомый интеграл.
Подобным же приемом вычисляются и интегралы вида
5. Интеграл можно вычислить с помощью подстановки . Имеем , поэтому
Подставляя это выражение и замечая, что
окончательно будем иметь
Заметим, что для проверки результата, полученного при вычислении неопределенного интеграла, достаточно его продифференцировать, после чего должно получиться подынтегральное выражение вычисляемого иптеграла.
Формула замены переменных в определенном интеграле
Теорема.
Пусть функция непрерывна на отрезке , а функция имеет непрерывную производную на отрезке , причём все значения при принадлежат отрезку , в том числе и . Тогда имеет место равенство
Замечание.
Заметим, что доказанная формула, в отличие от формулы замены переменной в неопределённом интеграле, даёт нам возможность после перехода к интегралу от функции новой переменной не возвращаться к исходному интегралу от функции переменной . После того, как замена сделана, мы можем "забыть", как выглядел исходный интеграл, и продолжать преобразования интеграла от функции новой переменной. Именно на том, что к старой переменной возвращаться не приходится, мы и получаем экономию усилий при применении формулы замены переменной в определённом интеграле, по сравнению с тем, что получилось бы, если бы мы просто нашли первообразную и применили формулу Ньютона - Лейбница.
Обратим ваше внимание на важную особенность формулы: кроме подынтегрального выражения, при замене переменной меняются и пределы интегрирования. Действительно, в интеграле по новой переменной должны быть указаны пределы изменения именно (то есть и ), в то время как в исходном интеграле по переменной указаны пределы изменения (то есть и ).
Советы о том, какая замена целесообразна для вычисления того или иного интеграла, - те же самые, что и при вычислении неопределённых интегралов, так что тут ничего нового изучать не придётся.
Пример.
Вычислим интеграл
Для этого сделаем замену , откуда . Кроме того, при имеем , а при имеем . Получаем:
Квадратурные формулы интерполяционного типа
Будем рассматривать формулы приближенного вычисления интегралов
где — заданная интегрируемая функция (так называемая весовая функция) и — достаточно гладкая функция. Рассматриваемые далее формулы имеют вид
где и — числа, .
Получим квадратурные формулы путем замены интерполяционным многочленом сразу на всем отрезке . Полученные таким образом формулы называются квадратурными формулами интерполяционного типа. Как правило, точность этих формул возрастает с увеличением числа узлов интерполирования. Формулы прямоугольников, трапеций и Симпсона являются частными случаями квадратурных формул интерполяционного типа, когда .
Получим выражения для коэффициентов квадратурных формул интерполяционного типа. Пусть на отрезке заданы узлы интерполирования . Предполагается, что среди этих узлов нет совпадающих, в остальном они могут быть расположены как угодно на .
Заменяя в интеграле (3) функцию интерполяционным многочленом Лагранжа
получим приближенную формулу (4), где
Таким образом, формула (4) является квадратурной формулой интерполяционного типа тогда и только тогда, когда ее коэффициенты вычисляются по правилу (5).
Формула замены переменных в кратном интеграле
Пусть — непрерывно дифференцируемое взаимпо-однозпачное отображение открытого множества в пространство и его якобиан не обращается в нуль на множестве .
Теорема.
Если — измеримое множество, содержащееся вместе со своим замыканием в открытом множестве : , а функция непрерывна на множестве , то
Эта формула равносильна формуле
Действительно, ограниченная функция одновременно интегрируема или нет как на измеримом множестве, так и на его замыкании, причем в случае интегрируемости интегралы от функции по множеству и по его замыканию совпадают.
В нашем случае функции и непрерывны соответственно на компактах и (являющихся замыканием измеримых множеств и ), следовательно, ограничены и интегрируемы на них.
Таким образом, все входящие в формулы (6) и (7) интегралы существуют, а сами эти формулы равносильны. Эти формулы называются формулами замены переменных в кратном интеграле.
Замена переменных в кратном интеграле часто существенно упрощает его исследование и вычисление. При этом в отличие от однократного интеграла нередко целью замены переменного является не упрощение подынтегральной функции, а переход к более простой области интегрирования даже ценой некоторого усложнения подынтегральной функции.
В качестве примера применения формулы замены переменных в кратном интеграле рассмотрим для двумерного интеграла случай перехода от декартовых координат к полярным.
Рассмотрим плоскость, на которой декартовы координаты обозначены , и на ней открытый прямоугольник
При отображении
прямоугольник отображается на множество плоскости с декартовыми координатами , которое представляет собой круг , из которого удален радиус .
Отображение (8) и его якобиан
непрерывно продолжаемы на замкнутый прямоугольник
образом которого при продолженном отображении является замкнутый круг , на котором отображение (8) уже не является взаимно-однозначным: взаимная однозначность нарушается на границе прямоугольника — отрезки при и отображаются в один и тот же отрезок , , а отрезок и вовсе отображается в точку (0, 0). Якобиан продолженного отображения обращается в нуль при .
Для отображения (8) и непрерывной на круге функции имеет место формула
Приведем конкретный пример вычисления интеграла по этой формуле:
Сведения об интегралах с бесконечными пределами
Определение.
Пусть функция непрерывна на бесконечном промежутке . Несобственным интегралом от функции на промежутке называется предел и обозначается
Определение.
Пусть функция непрерывна на бесконечном промежутке . Несобственным интегралом от функции f(x) на промежутке называется предел и обозначается
Определение.
Пусть функция непрерывна на всей числовой оси. Несобственный интеграл от функции на бесконечном промежутке определяется равенством
где — любое число на оси .
Из определений следует, что сходящиеся несобственные интегралы с бесконечными пределами интегрирования являются конечными пределами определенных интегралов с переменными верхним или нижним пределами при стремлении этих пределов к бесконечности.
Пусть функция непрерывна и неотрицательна на бесконечном промежутке . Известно, что интеграл численно равен площади криволинейной трапеции, ограниченной снизу отрезком оси , сверху — кривой , слева и справа — прямыми и . При возрастании прямая перемещается вправо вдоль оси . Если при этом интеграл сходится, то его величину принимают за площадь бесконечной трапеции, ограниченной снизу осью , сверху — графиком функции , слева — прямой .
Литература
- Л.Д. Кудрявцев. Курс математического анализа в 3 томах.
- З.И. Гурова, С.Н. Каролинская, А.П. Осипова. Математический анализ. Начальный курс с примерами и задачами.
- А.А. Самарский, А.В. Гулин. Численные методы М.: Наука, 1989.
- http://de.ifmo.ru/bk_netra/page.php?index=42&layer=1&tutindex=21#2
- http://sesia5.ru/vmat/gl5/21.html