Коэффициент корреляции Пирсона
Материал из MachineLearning.
(Различия между версиями)
(→Слабые стороны) |
|||
Строка 35: | Строка 35: | ||
* С помощью коэффициента корреляции можно определить линейную зависимость между величинами, другие взаимосвязи выявляются методами [[Регрессионный анализ|регрессионного анализа]]; | * С помощью коэффициента корреляции можно определить линейную зависимость между величинами, другие взаимосвязи выявляются методами [[Регрессионный анализ|регрессионного анализа]]; | ||
- | * Необходимо понимать различие понятий "независимость" и "некоррелированность". Из первого следует второе, но не наоборот. Для того, чтобы выяснить отношение между двумя переменными, необходимо избавиться от влияния третьей переменной. Рассмотрим пример 3-х переменных: x,y,z. Исключим влияние переменной z: | + | * Необходимо понимать различие понятий "независимость" и "некоррелированность". Из первого следует второе, но не наоборот. |
+ | |||
+ | Для того, чтобы выяснить отношение между двумя переменными, часто необходимо избавиться от влияния третьей переменной. Рассмотрим пример 3-х переменных: x,y,z. Исключим влияние переменной z: | ||
:: <tex>r_{xy \setminus z}=\frac{r_{xy}-r_{xz}r_{yz}}{\sqrt{ \left(\ 1-r_{xz} \right)^2 \left(\ 1-r_{yz} \right)^2}} </tex> | :: <tex>r_{xy \setminus z}=\frac{r_{xy}-r_{xz}r_{yz}}{\sqrt{ \left(\ 1-r_{xz} \right)^2 \left(\ 1-r_{yz} \right)^2}} </tex> |
Версия 18:14, 8 января 2009
|
Определение
Коэффициент корреляции Пирсона характеризует существование линейной зависимости между двумя величинами.
Даны две выборки
;
Коэффициент корреляции Пирсена рассчитывается по формуле:
где
- средние значения выборок x и y;
- среднеквадратичные отклонения;
− называют также теснотой линейной связи.
- , тогда - линейно зависимы.
- , тогда - линейно независимы.
Статистическая проверка наличия корреляции
Гипотеза : Отсутствие линейной связи
Статистика критерия:
- Распределение Стьюдента с степенями свободы.
Слабые стороны
- Неустойчивость к выбросам;
- С помощью коэффициента корреляции можно определить линейную зависимость между величинами, другие взаимосвязи выявляются методами регрессионного анализа;
- Необходимо понимать различие понятий "независимость" и "некоррелированность". Из первого следует второе, но не наоборот.
Для того, чтобы выяснить отношение между двумя переменными, часто необходимо избавиться от влияния третьей переменной. Рассмотрим пример 3-х переменных: x,y,z. Исключим влияние переменной z:
Для исключения влияния большего числа переменных:
, где - гл. минор матрицы коэффициентов корреляции переменных ;