Метод настройки с возвращениями
Материал из MachineLearning.
(дополнение) |
(уточнение) |
||
Строка 15: | Строка 15: | ||
Метод настройки с возвращениями основан на итерационном повторении двух шагов: | Метод настройки с возвращениями основан на итерационном повторении двух шагов: | ||
* На первом шаге фиксируются функции <tex>\varphi_j</tex>, и ''[[многомерная линейная регрессия| методами многомерной линейной регрессии]]'' вычисляются коэффициенты <tex>\theta_j</tex>. | * На первом шаге фиксируются функции <tex>\varphi_j</tex>, и ''[[многомерная линейная регрессия| методами многомерной линейной регрессии]]'' вычисляются коэффициенты <tex>\theta_j</tex>. | ||
- | * На втором шаге фиксируются коэффициенты <tex>\theta_j</tex> и все функции <tex>\{\varphi_k | + | * На втором шаге фиксируются коэффициенты <tex>\theta_j</tex> и все функции <tex>\{\varphi_k\}_{k \neq j}</tex> кроме одной <tex>\varphi_j</tex>, которая настраивается ''методами одномерной [[непараметрическая регрессия| непараметрической регрессии]]''. На втором шаге решается задача минимизации функционала |
:: <tex> Q(\varphi_j, X^n) = \sum_{i=1}^n \left(\theta_j \cdot \varphi_j(f_j (x_i)) + \underbrace{\sum_{l=1,\; l \neq j }^k \theta_l \cdot \varphi_l(f_l (x_i)) - y_i}_{z_i = const(\varphi_j)} \right)^2 \rightarrow \min_{\varphi_j}</tex>. | :: <tex> Q(\varphi_j, X^n) = \sum_{i=1}^n \left(\theta_j \cdot \varphi_j(f_j (x_i)) + \underbrace{\sum_{l=1,\; l \neq j }^k \theta_l \cdot \varphi_l(f_l (x_i)) - y_i}_{z_i = const(\varphi_j)} \right)^2 \rightarrow \min_{\varphi_j}</tex>. | ||
- | Здесь коэффициенты <tex>\theta_j</tex> и функции | + | Здесь коэффициенты <tex>\theta_j</tex> и функции <tex>\{\varphi_k\}_{k \neq j}</tex> фиксированы и не зависят от <tex>\varphi_j</tex>. Благодаря этому настройка <tex>\varphi_j</tex> сводится к стандартной [[задаче наименьших квадратов]] с обучающей выборкой <tex>\widetilde{X}_j^n = (f_j(x_i),\; y_i - \sum_{s=1,\; s \neq j }^k \theta_s \widehat{\varphi}_{is})_{i=1}^n</tex>. Для ее решения годятся любые одномерные методы: [[ядерное сглаживание]], [[сплайны]], полиномиальная или Фурье-аппроксимация. Для [[ядерное сглаживание| ядерного сглаживания]] с фиксированной шириной окна этап настройки функции <tex>\varphi_j</tex> фактически отсутствует; чтобы вычислять значения <tex>\varphi_j(f)</tex> по [[формула Надарая-Ватсона| формуле Надарая-Ватсона]], достаточно просто запомнить выборку <tex>\widetilde{X}_j^n</tex>. |
После настройки всех функций <tex>\varphi_j</tex> происходит возврат к первому шагу, и снова решается задача [[многомерная линейная регрессия| многомерной линейной регрессии]] для определения <tex>\theta_j</tex>. Отсюда происходит и название метода – '''настройка с возвращениями''' (backfitting). | После настройки всех функций <tex>\varphi_j</tex> происходит возврат к первому шагу, и снова решается задача [[многомерная линейная регрессия| многомерной линейной регрессии]] для определения <tex>\theta_j</tex>. Отсюда происходит и название метода – '''настройка с возвращениями''' (backfitting). | ||
- | == | + | == Схема алгоритма настройки с возвращениями (backfitting) == |
Входные параметры: | Входные параметры: | ||
* <tex>X</tex> – матрица «объекты-признаки»; | * <tex>X</tex> – матрица «объекты-признаки»; |
Версия 20:57, 9 января 2009
На практике встречаются ситуации, когда линейная модель регрессии представляется необоснованной, но предложить адекватную нелинейную модель также не удается. Тогда в качестве альтернативы строится модель вида
- ,
где - некоторые преобразования исходных признаков, в общем случае нелинейные. Задача состоит в том, чтобы одновременно подобрать и коэффициенты линейной модели , и неизвестные одномерные преобразования , при которых достигается минимум квадратичного функционала RSS – остаточная сумма квадратов.
Суть метода заключается в том, что в линейную модель добавляются нелинейные преобразования исходных признаков. Другими словами метод настройки с возвращениями (backfitting) совмещает многомерную линейную регрессию и одномерное сглаживание. Таким образом, нелинейная задача сводится к решению последовательности линейных задач.
Содержание |
Обозначения
Дана выборка ; – длина выборки. При этом ; – число независимых переменных.
Значение целевой зависимости для -го объекта .
Метод настройки с возвращениями (backfitting)
Метод настройки с возвращениями основан на итерационном повторении двух шагов:
- На первом шаге фиксируются функции , и методами многомерной линейной регрессии вычисляются коэффициенты .
- На втором шаге фиксируются коэффициенты и все функции кроме одной , которая настраивается методами одномерной непараметрической регрессии. На втором шаге решается задача минимизации функционала
- .
Здесь коэффициенты и функции фиксированы и не зависят от . Благодаря этому настройка сводится к стандартной задаче наименьших квадратов с обучающей выборкой . Для ее решения годятся любые одномерные методы: ядерное сглаживание, сплайны, полиномиальная или Фурье-аппроксимация. Для ядерного сглаживания с фиксированной шириной окна этап настройки функции фактически отсутствует; чтобы вычислять значения по формуле Надарая-Ватсона, достаточно просто запомнить выборку .
После настройки всех функций происходит возврат к первому шагу, и снова решается задача многомерной линейной регрессии для определения . Отсюда происходит и название метода – настройка с возвращениями (backfitting).
Схема алгоритма настройки с возвращениями (backfitting)
Входные параметры:
- – матрица «объекты-признаки»;
- – вектор ответов;
Выход:
- – вектор коэффициентов линейной комбинации.
1: нулевое приближение: ;
2: повторять |
Проблемы
- Выбор признака на шаге 4. Правильней, наверное, выбирать признак, для которого функционал RSS (Остаточная сумма квадратов) больше.
- Выбор ширины окна при ядерном сглаживании на шаге 7.
- Критерий останова на шаге 8.
Проблемы 1)-3) можно решить, воспользовавшись анализом регрессионных остатков.
История
Метод настройки с возвращениями (backfitting) предложен Хасти и Тибширани в 1986 году.
Литература
- Воронцов К.В. Лекции по алгоритмам восстановления регрессии. — 2007.
- Hastie, T., Tibshirani, R., Friedman, J. The Elements of Statistical Learning. — 2001. — 533 с.
См. также
- Статистический анализ данных (курс лекций, К.В.Воронцов)
- Непараметрическая регрессия
- Ядерное сглаживание