Медианный критерий

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Новая: здесь будет статья про медианный критерий)
Строка 1: Строка 1:
-
здесь будет статья про медианный критерий
+
В статистике медианный критерий - частный случай критерия хи-квадрат. Это - непараметрический критерий, который предназначен для проверки нулевой гипотезы о том, что медианы совокупностей, из которых сделаны две выборки - одинаковы.
 +
 
 +
Данные в каждой выборке разбиваются на две группы: одна состоит из элементов, значения которых выше чем медианное значение объединенной выборки, а другая состоит из данных, значения которых в медиане или ниже. При этом используется критерий Хи-квадрат Пирсона , чтобы определить, отличаются ли наблюдаемые частоты в каждой группе от ожидаемых частот, полученных из распределения, комбинирующего обе эти выборки.
 +
 
 +
Тест имеет низкую эффективность для диапазона выборок от умеренного до большого размера, и, в значительной степени, расценивается как устаревший. Критерий Уилкоксона-Манна-Уитни для двух выборок лучше работает в этом случае. Siegel & Castellan (1988, p. 124), считают, что медианному критерию нет никакой альтернативы, когда одно или более наблюдений находятся "за пределами шкалы". Существенное различие между двумя критериями состоит в том, что медианный критерий учитывает только положение каждого наблюдения относительно совокупной медианы, тогда как критерий Уилкоксона-Манна-Уитни принимает во внимание ранг каждого наблюдения. Таким образом из двух рассмотренных тестов, последний обычно более показателен.

Версия 23:43, 9 января 2009

В статистике медианный критерий - частный случай критерия хи-квадрат. Это - непараметрический критерий, который предназначен для проверки нулевой гипотезы о том, что медианы совокупностей, из которых сделаны две выборки - одинаковы.

Данные в каждой выборке разбиваются на две группы: одна состоит из элементов, значения которых выше чем медианное значение объединенной выборки, а другая состоит из данных, значения которых в медиане или ниже. При этом используется критерий Хи-квадрат Пирсона , чтобы определить, отличаются ли наблюдаемые частоты в каждой группе от ожидаемых частот, полученных из распределения, комбинирующего обе эти выборки.

Тест имеет низкую эффективность для диапазона выборок от умеренного до большого размера, и, в значительной степени, расценивается как устаревший. Критерий Уилкоксона-Манна-Уитни для двух выборок лучше работает в этом случае. Siegel & Castellan (1988, p. 124), считают, что медианному критерию нет никакой альтернативы, когда одно или более наблюдений находятся "за пределами шкалы". Существенное различие между двумя критериями состоит в том, что медианный критерий учитывает только положение каждого наблюдения относительно совокупной медианы, тогда как критерий Уилкоксона-Манна-Уитни принимает во внимание ранг каждого наблюдения. Таким образом из двух рассмотренных тестов, последний обычно более показателен.

Личные инструменты