Критерий Колмогорова-Смирнова
Материал из MachineLearning.
(→Примеры задач) |
(→Примеры задач) |
||
Строка 7: | Строка 7: | ||
Предположим, требуется выяснить, можно ли считать некоторую рулетку "честной". | Предположим, требуется выяснить, можно ли считать некоторую рулетку "честной". | ||
Для этого следует составить достаточно большую выборку из исходов этой рулетки. | Для этого следует составить достаточно большую выборку из исходов этой рулетки. | ||
- | + | Проверку того, является ли выборка равномерно распределённой, можно осуществить при помощи критерия Колмогорова-Смирнова. | |
==Описание критерия== | ==Описание критерия== |
Версия 14:10, 10 января 2009
Критерий Колмогорова-Смирнова используется для проверки гипотезы : "случайная величина имеет распределение ".
Содержание |
Примеры задач
Критерий Колмогорова-Смирнова уместно применять в тех случаях, когда нужно проверить, подчиняется ли наблюдаемая случайная величина некоторому закону распределения, известному с точностью до параметров. Например, все исходы, выдаваемые рулеткой казино, должны быть равновероятны. Предположим, требуется выяснить, можно ли считать некоторую рулетку "честной". Для этого следует составить достаточно большую выборку из исходов этой рулетки. Проверку того, является ли выборка равномерно распределённой, можно осуществить при помощи критерия Колмогорова-Смирнова.
Описание критерия
Пусть - выборка независимых одинаково распределённых случайных величин, - эмпирическая функция распределения, - некоторая фиксированная "истинная" функция распределения. Тогда статистика критерия определяется следующим образом:
Обозначим через гипотезу о том, что выборка подчиняется распределению . Тогда по теореме Колмогорова для введённой статистики справедливо:
Гипотеза отвергается, если статистика превышает квантиль распределения заданного уровня значимости , и принимается в противном случае.
Использование критерия для проверки нормальности
При помощи критерия Колмогорова-Смирнова определяется, описывает ли заданная функция наблюдаемое распределение , в то время как для проверки нормальности требуется выяснить, принадлежит ли функция распределения величины параметрическому семейству функций. Один из возможных способов решения этой проблемы заключается в вычислении выборочного среднего и выборочной дисперсии и последующем применении критерия к нормализованной выборке
Если эта нормализованная выборка имеет распределение , то считается, что исходная выборка также распределена нормально с параметрами .
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.
- Kolmogorov А. N. Confidence limits for an unknown distribution function // AMS. 1941. V. 12. P. 461-463.
- Смирнов Н. В. Оценка расхождения между эмпирическими кривыми распределений в двух независимых выборках // Бюллетень МГУ. Сер. А. Вып. 2. 1939. С. 13—14.
См. также
Ссылки
- Критерий согласия Колмогорова(википедия)