Модель Тейла-Вейджа

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 5: Строка 5:
Необходимо решить задачу прогнозирования временного ряда.
Необходимо решить задачу прогнозирования временного ряда.
-
'''Модель Тейла-Вейджа''' - усложненная [[Модель Хольта|модель Хольта]], учитывающая [[Сезонность|сезонность]] и аддетивный [[Тренд|тренд]].
+
'''Модель Тейла-Вейджа'''(Theil,Wage) - усложненная [[Модель Хольта|модель Хольта]], учитывающая [[Сезонность|сезонность]] и аддитивный [[Тренд|тренд]], в отличии от модели [[Модель Хольта-Уинтерса]] аддитивно включает линейный тренд, что оправдано при решении некоторых задач.
<tex>\hat{y}_{t+d}=a_t + d b_t \Theta_{t + (d MOD s) - s}</tex>
<tex>\hat{y}_{t+d}=a_t + d b_t \Theta_{t + (d MOD s) - s}</tex>
Строка 15: Строка 15:
<tex>\Theta_t=\alpha_2 \left( y_t-a_t \right) + \left(1-\alpha_2 \right) \Theta_{t-s}</tex>;
<tex>\Theta_t=\alpha_2 \left( y_t-a_t \right) + \left(1-\alpha_2 \right) \Theta_{t-s}</tex>;
-
где s - период [[Сезонность|сезонности]],<tex>\Theta_i, \; i \in 0 \dots s-1</tex> - сезонный профиль, <tex>a_t, \;r_t</tex> отвечают за линейную и экспоненциальную составляющую тренда соответствено.
+
где s - период [[Сезонность|сезонности]],<tex>\Theta_i, \; i \in 0 \dots s-1</tex> - сезонный профиль, <tex>b_t</tex> - параметр тренда, <tex>а_t</tex> - параметр прогноза, очищенный от влияния тренда и сезонности.
-
Параметры <tex>\alpha_1,\; \alpha_2, \; \alpha_3 \in \left( 0,1 \right) </tex>. Параметры выбираются по аналогии с выбором параметра α в [[Экспоненциальное_сглаживание|модели Брауна]].
+
 
 +
Параметры <tex>\alpha_1,\; \alpha_2, \; \alpha_3 \in \left( 0,1 \right) </tex>, выбирать параметры предлагается путем минимизации среднеквадратичной ошибки на эксперементальных данных. Проблема оптимального выбора параметров и пути её решения описаны в книге Лукашина.
== Литература==
== Литература==
''Лукашин Ю. П.'' Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003.
''Лукашин Ю. П.'' Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003.
 +
 +
''Theil H., Wage S.'' Some observations on adaptive forecasting // Management Science. - 1964. - Vol. 10. - Mb 2.
== Ссылки ==
== Ссылки ==
Строка 29: Строка 32:
[[Модель Хольта-Уинтерса]] — учитываются мультипликативный тренд и сезонность.
[[Модель Хольта-Уинтерса]] — учитываются мультипликативный тренд и сезонность.
-
{{stub}}
+
[[Скользящий контрольный сигнал| Анализ адекватности адаптивных моделей]]
 +
 
[[Категория:Прикладная статистика]]
[[Категория:Прикладная статистика]]
[[Категория:Энциклопедия анализа данных]]
[[Категория:Энциклопедия анализа данных]]

Версия 17:55, 11 января 2009

Содержание

Определение

Пусть задан временной ряд: y_i \dots y_t,\; y_i \in R.

Необходимо решить задачу прогнозирования временного ряда.

Модель Тейла-Вейджа(Theil,Wage) - усложненная модель Хольта, учитывающая сезонность и аддитивный тренд, в отличии от модели Модель Хольта-Уинтерса аддитивно включает линейный тренд, что оправдано при решении некоторых задач.

\hat{y}_{t+d}=a_t + d b_t \Theta_{t + (d MOD s) - s}

a_t=\alpha_1 \left( y_t - \Theta_{t-s} \right) + \left(1-\alpha_1 \right)\left(a_{t-1} +b_{t-1}\right);

b_t=\alpha_3 \left( a_t-a_{t-1} \right) + \left(1-\alpha_3 \right)b_{t-1};

\Theta_t=\alpha_2 \left( y_t-a_t \right) + \left(1-\alpha_2 \right) \Theta_{t-s};

где s - период сезонности,\Theta_i, \; i \in 0 \dots s-1 - сезонный профиль, b_t - параметр тренда, а_t - параметр прогноза, очищенный от влияния тренда и сезонности.


Параметры \alpha_1,\; \alpha_2, \; \alpha_3 \in \left( 0,1 \right) , выбирать параметры предлагается путем минимизации среднеквадратичной ошибки на эксперементальных данных. Проблема оптимального выбора параметров и пути её решения описаны в книге Лукашина.

Литература

Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003.

Theil H., Wage S. Some observations on adaptive forecasting // Management Science. - 1964. - Vol. 10. - Mb 2.

Ссылки

Модель Брауна — экспоненциальное сглаживание.

Модель Хольта - учитывается линейный тренд без сезонности.

Модель Хольта-Уинтерса — учитываются мультипликативный тренд и сезонность.

Анализ адекватности адаптивных моделей

Личные инструменты