Следящий контрольный сигнал
Материал из MachineLearning.
(→Гипотеза адекватности модели) |
(→Гипотеза адекватности модели) |
||
Строка 26: | Строка 26: | ||
[[Изображение:NormalDistribCrop.png|220px|thumb|Нормальное распределение. Серым обозначена область ограниченная [[Доверительный интервал| доверительным интервалом]].]] | [[Изображение:NormalDistribCrop.png|220px|thumb|Нормальное распределение. Серым обозначена область ограниченная [[Доверительный интервал| доверительным интервалом]].]] | ||
- | '''Критерий:''' <tex>K_t \in \left[-1.2 \Phi_{\frac{\alpha}{2}} \sqrt{\frac{\gamma}{2-\gamma}}, \; 1.2 \Phi_{1-\frac{\alpha}{2}} \sqrt{\frac{\gamma}{2-\gamma} \right]</tex>, где <tex>\Phi_{\alpha}</tex> - α-[[Квантиль|квантиль]] нормального распределения. | + | '''Критерий:''' Если <tex>K_t \in \left[-1.2 \Phi_{\frac{\alpha}{2}} \sqrt{\frac{\gamma}{2-\gamma}}, \; 1.2 \Phi_{1-\frac{\alpha}{2}} \sqrt{\frac{\gamma}{2-\gamma} \right]</tex>, где <tex>\Phi_{\alpha}</tex> - α-[[Квантиль|квантиль]] нормального распределения, то гипотеза <tex>H_0</tex> верна. |
== Литература== | == Литература== |
Версия 18:18, 11 января 2009
|
При использовании модели прогнозирования временного ряда встаёт проблема адекватности этой модели. Пусть , где - данные, которые уже известны, - прогноз на момент t, полученный с помощью некоторой адаптивной модели. Если ошибка невелика, т.е. разница между реальными данными и прогнозом мала, то использование данной модели оправдано.
Определение
- скользящий контрольный сигнал.
Рекуррентная формула вычисления ошибок:
;
;
где , рекомендуется брать
Гипотеза адекватности модели
Гипотеза: : модель адекватна.
При - дисперсия шума. .
Статистика: Скользящий контрольный сигнал - .
Критерий: Если , где - α-квантиль нормального распределения, то гипотеза верна.
Литература
Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003.
Ссылки
Модель Брауна - экспоненциальное сглаживание.
Модель Хольта — учитываются линейный тренд без сезонности.
Модель Хольта-Уинтерса — учитываются мультипликативный тренд и сезонность.
Модель Тейла-Вейджа — учитываются аддитивный тренд и сезонность.