Тренд
Материал из MachineLearning.
Строка 1: | Строка 1: | ||
- | + | {{TOCright}} | |
- | Для описания [[временной ряд|временных рядов]] используются математические модели. | + | '''Тренд''' - тенденция изменения показтелей [[временной ряд|временного ряда]]. Тренды могут быть описаны различными функциями — линейными, логарифмическими, степенными и т. д. Тип тренда устанавливают на основе данных временного ряда, путем осреднения показателей динамики ряда, на основе [[Проверка статистических гипотез|статистической проверки гипотезы]] о постоянстве параметров графика. |
+ | |||
+ | == Методы оценки: == | ||
+ | # Параметрические — рассматривают временной ряд как гладкую функцию от <tex>t: X_t=f(t), t=1...n;</tex> затем различными методами оцениваются параметры функции <tex>f(t)</tex>, например, [[Метод наименьших квадратов|МНК]], выделяют линеаризуемые тренды, то есть приводимые к линейному виду относительно параметров тренда на основе тех или иных алгебраических преобразований. | ||
+ | # Непараметрические — это разного рода скользящие средние (простая, взвешенная), их расчет; метод применяется для оценки тренда, но не для прогнозирования; полезен в случае, когда для оценки тренда не удается подобрать подходящую функцию. | ||
+ | |||
+ | Предпололжим что основной процесс - неполностью изученная физ. система. Можно построить моель независимо от природы процесса, чтобы объяснить поведение показателей. В частности, если нужно узнать возрастает или убывает тенденция покаазтелей, это можно при поомщи статистики описать | ||
+ | |||
+ | == Моделирование трендов == | ||
+ | |||
+ | Для описания [[временной ряд|временных рядов]] используются математические модели. Временной ряд <tex>x_t</tex>, генерируемый некоторой моделью, можно представить в виде двух компонент: | ||
<tex>x_t=\xi_t+\epsilon_t</tex>, | <tex>x_t=\xi_t+\epsilon_t</tex>, | ||
- | где величина <tex>\epsilon_t</tex> - шум, генерируется случайным неавтокоррелированным процессом с нулевым математическим ожиданием и конечной (не обязательно постоянной) дисперсией, а величина <tex>\xi_t</tex> может быть cгенерирована либо детерминированной функцией, либо случайным процессом, либо какой-нибудь их комбинацией. Величины <tex>\xi_t</tex> и <tex>\epsilon_t</tex> различаются характером воздействия на значения последующих членов ряда | + | где величина <tex>\epsilon_t</tex> - шум, генерируется случайным неавтокоррелированным процессом с нулевым математическим ожиданием и конечной (не обязательно постоянной) дисперсией, а величина <tex>\xi_t</tex> может быть cгенерирована либо детерминированной функцией, либо случайным процессом, либо какой-нибудь их комбинацией. Величины <tex>\xi_t</tex> и <tex>\epsilon_t</tex> различаются характером воздействия на значения последующих членов ряда: |
- | + | * переменная <tex>\epsilon_t</tex> влияет только на значение синхронного ей члена ряда | |
+ | *<tex>\xi_t</tex> в известной степени определяет значение нескольких или всех последующих членов ряда. | ||
+ | |||
+ | Через величину <tex>\xi_t</tex> осуществляется взаимодействие членов ряда; таким образом, в ней содержится информация, необходимая для получения прогнозов. | ||
+ | Величина <tex>\xi_t</tex> называется уровнем ряда в момент <tex>t</tex>, а закон эволюции уровня во времени — '''трендом'''. Тренд может быть выражен как детерминированной, так и случайной функциями, либо их комбинацией. Стохастические тренды имеют, например, ряды со случайным уровнем или случайным скачкообразным характером роста. | ||
Компоненты временного ряда <tex>\xi_t</tex> и <tex>\epsilon_t</tex> ненаблюдаемы. Они являются теоретическими величинами. Их выделение и составляет предмет анализа временного ряда в задаче прогнозирования. Оценку будущих членов ряда обычно делают по прогнозной модели. Прогнозная модель —- это модель, аппроксимирующая тренд. Прогнозы — это оценки будущих уровней ряда, а последовательность прогнозов для различных периодов упреждения <tex>\tau</tex> = 1, 2, .... k составляет оценку тренда. | Компоненты временного ряда <tex>\xi_t</tex> и <tex>\epsilon_t</tex> ненаблюдаемы. Они являются теоретическими величинами. Их выделение и составляет предмет анализа временного ряда в задаче прогнозирования. Оценку будущих членов ряда обычно делают по прогнозной модели. Прогнозная модель —- это модель, аппроксимирующая тренд. Прогнозы — это оценки будущих уровней ряда, а последовательность прогнозов для различных периодов упреждения <tex>\tau</tex> = 1, 2, .... k составляет оценку тренда. | ||
- | При построении прогнозной модели выдвигается гипотеза о динамике величины <tex>\xi_t</tex>, т. е. о характере тренда. Однако в связи с тем, что уверенность в гипотезе всегда относительна, рассматриваемые | + | При построении прогнозной модели выдвигается гипотеза о динамике величины <tex>\xi_t</tex>, т.е. о характере тренда. Однако в связи с тем, что уверенность в гипотезе всегда относительна, рассматриваемые модели наделяются адаптивными свойствами, способностью к корректировке исходной гипотезы или даже к замене ее другой, более адекватно (с точки зрения точности прогнозов) отражающей поведение реального ряда. |
- | + | '''Пример детерминированного тренда''': | |
- | + | ||
- | Пример детерминированного тренда: | + | |
<tex>\xi_t = a_1 + a_2t + a_3t^2</tex> | <tex>\xi_t = a_1 + a_2t + a_3t^2</tex> | ||
- | Пример случайного тренда: | + | '''Пример случайного тренда''': |
<tex>\xi_t = \xi_{t-1} + u_t = \xi_0 + \sum_{i=1}^{t} u_i</tex> | <tex>\xi_t = \xi_{t-1} + u_t = \xi_0 + \sum_{i=1}^{t} u_i</tex> | ||
Строка 25: | Строка 37: | ||
<tex>u_t</tex> — случайная переменная. | <tex>u_t</tex> — случайная переменная. | ||
- | Пример тренда смешанного типа: | + | '''Пример тренда смешанного типа''': |
<tex>\xi_t = a_1 + a_2t + u_t + qu_{t-1} + b\sin(\omega t)</tex>, | <tex>\xi_t = a_1 + a_2t + u_t + qu_{t-1} + b\sin(\omega t)</tex>, | ||
где <tex>a_1,~ a_2,~ q,~ b,~ \omega</tex> - постоянные коэффициенты, <tex>u_t</tex> - случайная переменная. | где <tex>a_1,~ a_2,~ q,~ b,~ \omega</tex> - постоянные коэффициенты, <tex>u_t</tex> - случайная переменная. | ||
+ | |||
+ | == См. также == | ||
+ | * [[Модель Брауна]] | ||
+ | * [[Модель Хольта]] | ||
+ | * [[Модель Хольта-Уинтерса]] | ||
+ | * [[Модель Тейла-Вейджа]] | ||
+ | |||
+ | == Ссылки == | ||
+ | [http://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%B5%D0%BD%D0%B4] Wikipedia | ||
== Литература == | == Литература == |
Версия 21:53, 11 января 2009
|
Тренд - тенденция изменения показтелей временного ряда. Тренды могут быть описаны различными функциями — линейными, логарифмическими, степенными и т. д. Тип тренда устанавливают на основе данных временного ряда, путем осреднения показателей динамики ряда, на основе статистической проверки гипотезы о постоянстве параметров графика.
Методы оценки:
- Параметрические — рассматривают временной ряд как гладкую функцию от затем различными методами оцениваются параметры функции , например, МНК, выделяют линеаризуемые тренды, то есть приводимые к линейному виду относительно параметров тренда на основе тех или иных алгебраических преобразований.
- Непараметрические — это разного рода скользящие средние (простая, взвешенная), их расчет; метод применяется для оценки тренда, но не для прогнозирования; полезен в случае, когда для оценки тренда не удается подобрать подходящую функцию.
Предпололжим что основной процесс - неполностью изученная физ. система. Можно построить моель независимо от природы процесса, чтобы объяснить поведение показателей. В частности, если нужно узнать возрастает или убывает тенденция покаазтелей, это можно при поомщи статистики описать
Моделирование трендов
Для описания временных рядов используются математические модели. Временной ряд , генерируемый некоторой моделью, можно представить в виде двух компонент:
,
где величина - шум, генерируется случайным неавтокоррелированным процессом с нулевым математическим ожиданием и конечной (не обязательно постоянной) дисперсией, а величина может быть cгенерирована либо детерминированной функцией, либо случайным процессом, либо какой-нибудь их комбинацией. Величины и различаются характером воздействия на значения последующих членов ряда:
- переменная влияет только на значение синхронного ей члена ряда
- в известной степени определяет значение нескольких или всех последующих членов ряда.
Через величину осуществляется взаимодействие членов ряда; таким образом, в ней содержится информация, необходимая для получения прогнозов. Величина называется уровнем ряда в момент , а закон эволюции уровня во времени — трендом. Тренд может быть выражен как детерминированной, так и случайной функциями, либо их комбинацией. Стохастические тренды имеют, например, ряды со случайным уровнем или случайным скачкообразным характером роста.
Компоненты временного ряда и ненаблюдаемы. Они являются теоретическими величинами. Их выделение и составляет предмет анализа временного ряда в задаче прогнозирования. Оценку будущих членов ряда обычно делают по прогнозной модели. Прогнозная модель —- это модель, аппроксимирующая тренд. Прогнозы — это оценки будущих уровней ряда, а последовательность прогнозов для различных периодов упреждения = 1, 2, .... k составляет оценку тренда.
При построении прогнозной модели выдвигается гипотеза о динамике величины , т.е. о характере тренда. Однако в связи с тем, что уверенность в гипотезе всегда относительна, рассматриваемые модели наделяются адаптивными свойствами, способностью к корректировке исходной гипотезы или даже к замене ее другой, более адекватно (с точки зрения точности прогнозов) отражающей поведение реального ряда.
Пример детерминированного тренда:
Пример случайного тренда:
где — некоторое начальное значение;
— случайная переменная.
Пример тренда смешанного типа:
,
где - постоянные коэффициенты, - случайная переменная.
См. также
Ссылки
[1] Wikipedia
Литература
- Лукашин Ю.П. Адаптивные методы краткосрочного прогнозирования временных рядов - М. Финансы и статистика, 2003