Многомерная линейная регрессия

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (Метод наименьших квадратов как функционал качества: орфография)
Строка 16: Строка 16:
В матричных обозначениях функционал среднего квадрата ощибки принимает вид
В матричных обозначениях функционал среднего квадрата ощибки принимает вид
::<tex>Q(\alpha)\ =\ \parallel W(F\alpha\ -\ y)\parallel^2</tex>.
::<tex>Q(\alpha)\ =\ \parallel W(F\alpha\ -\ y)\parallel^2</tex>.
-
Функционал с произвольными весами легко преводится к функционалу с единичными весами путём несложной предванительной обработки данных <tex>F' = WF\ ,\ y' = Wy\ </tex>:
+
Функционал с произвольными весами легко преводится к функционалу с единичными весами путём несложной предварительной обработки данных <tex>F' = WF\ ,\ y' = Wy\ </tex>:
::<tex>Q(\alpha)\ =\ \parallel F'\alpha\ -\ y'\parallel^2\ =\ (F'\alpha\ -\ y')^\top(F'\alpha\ -\ y')</tex>
::<tex>Q(\alpha)\ =\ \parallel F'\alpha\ -\ y'\parallel^2\ =\ (F'\alpha\ -\ y')^\top(F'\alpha\ -\ y')</tex>

Версия 11:24, 15 января 2009

Многомерная линейная регрессия по сути есть линейная регрессия, в которой объекты x и ответы y являются векторами.

Содержание

Примеры задач

Многомерная линейная регрессия широко применяется в задачах прогнозирования временных рядов, где объекты и ответы являются рядами. В частности, в методе рекуррентной нейросети с откликом.

Обозначения

Пусть имеется набор n вещественнозначных признаков f_j(x), j=1,...,n. Введём матричные обозначения: матрицу информации F, целевой вектор y, вектор параметров \alpha и диагональную матрицу весов W:

F=\(f_1(x_1)\ \ \ldots\ \ f_n(x_1)<br>\ \vdots\ \ \ \ \ \ \ \ \ \ \ddots\ \ \ \ \vdots<br>f_1(x_l)\ \ \ldots\ \ f_n(x_l)\)\;, \ \ \ y=\(y_1<br>\ \vdots<br>y_l\)\;, \ \ \ \alpha=\(\alpha_1<br>\ \vdots<br>\alpha_n\)\;, \ \ \ W=\(\sqrt{w_1}\ \ \ \ \ \ \ \ 0\ <br>\ \ \ \ \ \ \ddots<br>\ 0\ \ \ \ \ \ \ \ \sqrt{w_l}\)\;.

Метод наименьших квадратов как функционал качества

Задача минимизации функционала качества метода наименьших квадратов

Q(\alpha, X^l) = \sum_{i=1}^l\mathbf{w}_i(f(x_i, \alpha)-y_i)^2\longrightarrow\min

существенно упрощается, если модель алгоритмов линейна по параметрам \alpha \in \mathbb{R}^n:

f(x,\alpha) = \sum_{j=1}^n\alpha_jf_j(x).

В матричных обозначениях функционал среднего квадрата ощибки принимает вид

Q(\alpha)\ =\ \parallel W(F\alpha\ -\ y)\parallel^2.

Функционал с произвольными весами легко преводится к функционалу с единичными весами путём несложной предварительной обработки данных F' = WF\ ,\ y' = Wy\ :

Q(\alpha)\ =\ \parallel F'\alpha\ -\ y'\parallel^2\ =\ (F'\alpha\ -\ y')^\top(F'\alpha\ -\ y')

Литература

  1. Воронцов К.В. Лекции по алгоритмам восстановления регрессии. — 2007.

См. также

Личные инструменты