Computational Learning Theory (конференция)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м
(ссылки)
Строка 17: Строка 17:
== Ссылки ==
== Ссылки ==
 +
* [http://colt2008.cs.helsinki.fi COLT-21] 2008, Helsinki, Finland.
 +
* [http://www.learningtheory.org/colt2007/index.html COLT-20] 2007, San Diego, California, USA.
 +
* [http://www.learningtheory.org/colt2006 COLT-19] 2006, Pittsburgh, Pennsylvania, USA.
 +
* [http://www.learningtheory.org/colt2005 COLT-18] 2005, Bertinoro, Italy.
 +
* [http://www.learningtheory.org/colt2004 COLT-17] 2004, Banff, Canada.
 +
* [http://www.learningtheory.org/colt2003 COLT-16] 2003, Washington DC, USA.
* [http://learningtheory.org http://learningtheory.org] — основной сайт конференции.
* [http://learningtheory.org http://learningtheory.org] — основной сайт конференции.

Версия 20:08, 3 мая 2009

Computational Learning Theory — основная международная научная конференция по теории вычислительного обучения. Обычно проводится совместно с международной конференцией по машинному обучению ICML (International Conference on Machine Learning).

Ежегодные конференции COLT проводятся, начиная с 1988 года. Европейские конференции EuroCOLT и ALT сформировались несколько позже.

Теория вычислительного обучения (COLT) изучает методы построения и анализа алгоритмов, обучаемых по прецедентам. Она сосредоточена на получении строгих математических результатов.

Основные направления исследований — вычислительная сложность алгоритмов и проблема переобучения, при тесном взаимодействии с такими смежными областями, как прикладное машинное обучение, статистика, теория информации, распознавание образов, статистическая физика, искусственный интеллект, теория сложности, криптография.


Ссылки

  • COLT-21 2008, Helsinki, Finland.
  • COLT-20 2007, San Diego, California, USA.
  • COLT-19 2006, Pittsburgh, Pennsylvania, USA.
  • COLT-18 2005, Bertinoro, Italy.
  • COLT-17 2004, Banff, Canada.
  • COLT-16 2003, Washington DC, USA.
Личные инструменты