EM-алгоритм с последовательным добавлением компонент (пример)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Алгоритм отыскания оптимальных параметров)
(Постановка задачи)
Строка 8: Строка 8:
== Постановка задачи ==
== Постановка задачи ==
-
Задана выборка <tex>\{(\mathbf{x}_i,y_i)\}_{i=1}^{\ell}</tex>, в которой <tex>X^{\ell}</tex> = <tex>\{\mathbf{x}_i\}_{i=1}^{\ell}</tex> - множество объектов, <tex>Y^{\ell}</tex> = <tex>\{\mathbf{y}_i\}_{i=1}^{\ell}</tex> - множество ответов. Предполагается, что на множестве объектов задана<ref>Исправлено.</ref> плотность распределения <tex>p(x)</tex>, представленная в виде смеси <tex>k</tex> гауссиан с параметрами <tex>\mu</tex> и <tex>\Sigma</tex>,
+
Задана выборка <tex>\{(\mathbf{x}_i,y_i)\}_{i=1}^m</tex>, в которой <tex>X^m</tex> = <tex>\{\mathbf{x}_i\}_{i=1}^m</tex> - множество объектов, <tex>Y^m</tex> = <tex>\{\mathbf{y}_i\}_{i=1}^m</tex> - множество ответов. Предполагается, что на множестве объектов задана<ref>Исправлено.</ref> плотность распределения <tex>p(x)</tex>, представленная в виде смеси <tex>k</tex> гауссиан с параметрами <tex>\mu</tex> и <tex>\Sigma</tex>,
<center><tex>p(x) = \sum_{i=1}^k w_jp_j(x) = \sum_{i=1}^k w_jN(x;\mu_j,\Sigma_j).</tex></center>
<center><tex>p(x) = \sum_{i=1}^k w_jp_j(x) = \sum_{i=1}^k w_jN(x;\mu_j,\Sigma_j).</tex></center>
Задача разделения смеси заключается в том, чтобы, имея выборку <tex>X^m</tex>
Задача разделения смеси заключается в том, чтобы, имея выборку <tex>X^m</tex>
-
<ref><tex>m</tex> или <tex>\ell</tex>?</ref>
 
случайных и независимых наблюдений из смеси <tex>p(x)</tex> оценить вектор параметров <tex>\theta = (w_1,...,w_k,\mu_1,...,\mu_k,\Sigma_1,...,\Sigma_k)</tex> доставляющий максимум функции правдоподобия
случайных и независимых наблюдений из смеси <tex>p(x)</tex> оценить вектор параметров <tex>\theta = (w_1,...,w_k,\mu_1,...,\mu_k,\Sigma_1,...,\Sigma_k)</tex> доставляющий максимум функции правдоподобия
-
<center><tex>Q(\Theta) = \ln\prod_{i=1}^mp(x_i|w,\mu,\Sigma) = \sum_{i=1}^m\ln\sum_{j=1}^kw_jp_j(x_i) \rightarrow max_{\Theta}</tex></center>
+
<center><tex>Q(\Theta) = \ln\prod_{i=1}^mp(x_i|w,\mu,\Sigma) = \sum_{i=1}^m\ln\sum_{j=1}^kw_jp_j(x_i) \rightarrow \max_{\Theta}</tex></center>
== Алгоритм отыскания оптимальных параметров ==
== Алгоритм отыскания оптимальных параметров ==

Версия 14:35, 5 мая 2009

Содержание

EM-алгоритм с последовательным добавлением компонент — общий метод[1] нахождения функции плотности распределения объектов [1] . Предполагается, что она имеет вид смеси k распределений[1]. В данной статье рассматривается гауссовское распредение выборки, количество гауссианов произвольно[1].

[1]

Постановка задачи

Задана выборка \{(\mathbf{x}_i,y_i)\}_{i=1}^m, в которой X^m = \{\mathbf{x}_i\}_{i=1}^m - множество объектов, Y^m = \{\mathbf{y}_i\}_{i=1}^m - множество ответов. Предполагается, что на множестве объектов задана[1] плотность распределения p(x), представленная в виде смеси k гауссиан с параметрами \mu и \Sigma,

p(x) = \sum_{i=1}^k w_jp_j(x) = \sum_{i=1}^k w_jN(x;\mu_j,\Sigma_j).

Задача разделения смеси заключается в том, чтобы, имея выборку X^m случайных и независимых наблюдений из смеси p(x) оценить вектор параметров \theta = (w_1,...,w_k,\mu_1,...,\mu_k,\Sigma_1,...,\Sigma_k) доставляющий максимум функции правдоподобия

Q(\Theta) = \ln\prod_{i=1}^mp(x_i|w,\mu,\Sigma) = \sum_{i=1}^m\ln\sum_{j=1}^kw_jp_j(x_i) \rightarrow \max_{\Theta}

Алгоритм отыскания оптимальных параметров

Оптимальные параметры отыскиваются последовательно с помощью EM-алгоритма. Идея заключается во введении вспомогательного вектора скрытых переменных G, обладающего двумя замечательными свойствами. С одной стороны, он может быть вычислен, если известны значения вектора параметров \Theta, с другой стороны, поиск максимума правдоподобия сильно упрощается, если известны значения скрытых переменных. EM-алгоритм состоит из итерационного повторения двух шагов. На E-шаге вычисляется ожидаемое значение (expectation) вектора скрытых переменных G по текущему приближению вектора параметров \Theta. На М-шаге решается задача максимизации правдоподобия (maximization) и находится следующее приближение вектора \Theta по текущим значениям векторов G и \Theta.

Если число компонент смеси заранее неизвестно, то применяется EM-алгоритм с последовательным добавлением компонент. Если при каком-либо k число неправильно классифицированных объектов превышает допустимое, то k увеличивается и повторяется EM(X,k_{new}). [1]

  • Вход:

Выборка X^m = \{x_1,...,x_m\} ; R - максимальный допустимый разброс правдоподобия объектов; m_0 - минимальная длина выборки, по которой можно восстановить плотность; \delta - параметр критерия останова;

  • Выход:

k - число компонент смеси; \Theta = (w_j,\mu_j,\Sigma_j)_{j=1}^k

  • Алгоритм

1. начальное приближение - одна компонента:
     k:=1; \qquad w_1:=1; \qquad \mu_1=\frac{1}{w_1}\sum_{i=1}^m g_{i1}x_i; \qquad \Sigma_1 = \frac{1}{mw_1}\sum_{i=1}^m g_{i1}(x_i-\mu_j)(x_i-\mu_j)^{T};
2. для всех k:= 2,3,4...
3.      выделить объекты с низким правдоподобием
         U:= \{x_i \in X^m\ | ~ p(x_i) <  \frac{max_j ~ p(x_j)}{R}  \}
4.      Если |U|<m_0 то выход из цикла по k
5.      Начальное приближение для k компоненты:
        w_k:=\frac{1}{m}|U|; \qquad \mu_k=\frac{1}{mw_k}\sum_{i=1}^m g_{ik}x_i; \qquad \Sigma_k = \frac{1}{mw_k}\sum_{i=1}^m g_{ik}(x_i-\mu_j)(x_i-\mu_j)^{T};
        w_j:=w_j(1-w_k) \qquad j = 1,...,k-1;
6.     EM(X^m,k,\Theta,\delta);

Вычислительный эксперимент

Алгоритм тестируется на модельных и реальных данных.

Пример 1

Рассмотрим пример на модельных данных. Выборка состоит из четырех классов. Первый класс представляет собой две гауссианы с диагональной и недиагональной матрицами ковариации, остальные - одна гауссиана. [1]

[X1, Y1] = gengaussdata(150, [0;0], [1/4,1/2]);
[X2, Y2] = gengaussdata(150, [4;0], [1 5/6;5/6 1]);
[X4, Y4] = gengaussdata(120, [2;4], [1/10;1/10]);
[X3, Y3] = gengaussdata(200, [-2,2], [1/3, 1/3]);
[X5, Y5] = gengaussdata(200, [2,2], [1.25, 1/20]);
X=[X1;X2;X3;X4;X5];
%Y are answers (numbers of classes)
Y=[Y1;Y2;Y3+1;Y4+2;Y5+3];
hold off
drawdata(X,Y,'*');
%learning algorithm
[W,M,Sigma,k,Ytheta] = emlearn(X, Y, [2,40,0.001])
 
%testing and geting answers from algorithm
[Yanswer] = emtest(X, M, Sigma, Ytheta);
 
drawdata(X,Yanswer,'o');
 
%printing centers of classes according to algorithm decision
printcenters(M);

435 × 342 435 × 342
Истинное распределение классов показано на рисунке слева. Одинаковым цветом помечены элементы одного класса. Как можно заметить, некоторые представители "красных", "бирюзовых" и "синих" перемешались.

Качество обучения алгоритма проверяется на той же выборке. На правом рисунке кружками показаны полученные ответы, цвет отвечает за принадлежность к соответствующему классу. Центры классов, отмечены черным кружками. Алгоритм нашел восемь гауссовских распределений вместо четырех, причем одна из красных компонент описывается сразу 4 гауссианами, в то время как остальные компоненты выборки - одной. Этот факт говорит о том, что одна гауссиана плохо приближает данное распределение, и, для уменьшения числа ошибок, следует приблизить её большим числом гауссиан. Алгоритм допустил 16 ошибок, что на выборке из 820 элементов составляет менее 2%.


Пример 2

В качестве второго примера возьмем два плохо разделимых класса.


Благодаря тому, что алгоритм выделил четыре гауссианы в синем классе, некоторые его элементы, далеко забравшиеся в чужой класс, были классифицированы правильно. [1]

Ирисы Фишера

Проверку алгоритма проведем на классической задаче: Ирисы Фишера Объектами являются три типа ирисов: setosa, versicolor, virginica

У каждого объекта есть четыре признака: длина лепестка, ширина лепестка, длина чашелистика, ширина чашелистика. Для удобства визуализации результатов будем использовать первые два признака.

load 'iris2.data'
X = iris2(:,[3,4]);
Y = [ones([50,1]);2*ones([50,1]);3*ones([50,1])];
hold off
drawdata(X,Y,'*');
title('Irises classification')
xlabel('petal width, cm');
ylabel('petal length, cm');
legend('Iris Setosa','Iris Versicolour','Iris Virginica','Location','NorthWest');
[W,M,Sigma,k,Ytheta] = emlearn(X, Y, [2,20,0.0005])
[Yanswer] = emtest(X, M, Sigma, Ytheta);
drawdata(X,Yanswer,'o')

Алгоритм хорошо отделил ирисы setosa от остальных, но допустил достаточное[1]число ошибок при разделении ирисов versicolor и virginica. Это произошло потому, что алгоритм изначально решал задачу кластеризации и лишь потом задачу классификации, приписывая каждому кластеру номер наиболее хорошо приближаемого им класса. Для разделения [1] последних двух классов можно использовать линейные алгоритмы классификации, либо решать с помощью EM-алгоритма, используя все четыре признака.

Исходный код

Скачать листинги алгоритмов можно здесь EMk.m, emlearn.m, emtest.m

Смотри также

Литература

  • [1]
  • К. В. Воронцов, Лекции по статистическим (байесовским) алгоритмам классификации
Данная статья является непроверенным учебным заданием.
Студент: Участник:Кирилл Павлов
Преподаватель: Участник:В.В.Стрижов
Срок: 28 мая 2009

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.

Замечания

Личные инструменты