Метод Парзеновского окна (пример)
Материал из MachineLearning.
(→Постановка задачи разделения классов методом парзеновского окна) |
|||
Строка 1: | Строка 1: | ||
'''Метод Парзеновского окна''' принадлежит к непараметрическим методам классификации и представляет собой одну из возможных реализаций байесовского подхода к решению задачи классификации. | '''Метод Парзеновского окна''' принадлежит к непараметрическим методам классификации и представляет собой одну из возможных реализаций байесовского подхода к решению задачи классификации. | ||
== Постановка задачи разделения классов методом парзеновского окна == | == Постановка задачи разделения классов методом парзеновского окна == | ||
+ | Пусть у нас задана выборка <tex>\{(\mathbf{x}_i,y_i)\}_{i=1}^m</tex>, где <tex>X^m</tex> = <tex>\{\mathbf{x}_i\}_{i=1}^m</tex> - множество объектов, а <tex>Y^m</tex> = <tex>\{\mathbf{y}_i\}_{i=1}^m</tex> - множество объектов на этих ответах. Кроме того, задан объект <tex>x_0</tex>б который небоходимо классифицировать методом парзеновского окна. | ||
+ | Задача состоит в том, что бы подобрать параметр <tex>h</tex> - ширину окна и тип ядра таким образом,что бы при классификации с помощью метода парзеновского окна ошибок было бы как можно меньше: | ||
+ | <center><tex>a(x;X^{l},h)=\arg \max_{y\in Y} \lambda_{y} \sum_{i=1}^l {[}y_i = y{]} K(\frac{p(x,x_i)}{h})</tex></center> | ||
== Вычислительный эксперимент == | == Вычислительный эксперимент == |
Версия 10:17, 19 мая 2009
Метод Парзеновского окна принадлежит к непараметрическим методам классификации и представляет собой одну из возможных реализаций байесовского подхода к решению задачи классификации.
Содержание |
Постановка задачи разделения классов методом парзеновского окна
Пусть у нас задана выборка , где = - множество объектов, а = - множество объектов на этих ответах. Кроме того, задан объект б который небоходимо классифицировать методом парзеновского окна. Задача состоит в том, что бы подобрать параметр - ширину окна и тип ядра таким образом,что бы при классификации с помощью метода парзеновского окна ошибок было бы как можно меньше:
Вычислительный эксперимент
Исходный код
Скачать листинги алгоритмов можно здесь parzenclassification.m,slidingcontrol.m,fqual.m
Смотри также
Литература
- К. В. Воронцов, Лекции по линейным алгоритмам классификации
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |