Участник:Strijov/Черновики
Материал из MachineLearning.
(Различия между версиями)
Строка 15: | Строка 15: | ||
* '''Авторы''': В.В. Стрижов, Р.Г. Нейчев | * '''Авторы''': В.В. Стрижов, Р.Г. Нейчев | ||
- | + | === Задача 2 === | |
+ | * '''Название''': Построение аппроксимирующего описания скалограммы в задаче прогнозирования движений по электрокортикограмме. | ||
+ | * '''Задача''': В рамках решения задачи декодирования сигналов ECoG решается задача классификации движений по временным рядам показаний электродов. Инструментами для извлечения признаков из временных рядов ECoG являются коэффициенты вейвлет-преобразования исследуемого сигнала [Макарчук 2016], на основе которых для каждого электрода строится скалограмма - двумерный массив признаков в пространстве частота-время. Объединение скалограмм для каждого электрода даёт признаки временного ряда в пространственно-частотно-временной области. Построенное таким образом признаковое описание заведомо содержит мультикоррелирующие признаки и является избыточным. Требуется предложить метод снижения размерности признакового пространства. | ||
+ | * '''Данные''': Измерения положений пальцев при совершении простых жестов. [https://purl.stanford.edu/zk881ps0522 Описание экспериментов] [https://stacks.stanford.edu/file/druid:zk881ps0522/gestures.zip данные]. | ||
+ | * '''Литература''': | ||
+ | ** Макарчук Г.И., Задаянчук А.И. Стрижов В.В. 2016. Использование метода частичных наименьших квадратов для декодирования движения руки с помощью ECoG сигналов у обезьян. [http://svn.code.sf.net/p/mlalgorithms/code/Group374/Makarchuk2016ECoGSignals/doc/Makarchuk2016ECoGSignals.pdf pdf] | ||
+ | ** Карасиков М.Е., Стрижов В.В. Классификация временных рядов в пространстве параметров порождающих моделей // Информатика и ее применения, 2016. [[http://strijov.com/papers/Karasikov2016TSC.pdf URL]] | ||
+ | ** Кузнецов М.П., Ивкин Н.П. Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию // Машинное обучение и анализ данных. 2015. T. 1, № 11. C. 1471 - 1483. | ||
+ | * '''Базовой алгоритм''': PLS | ||
+ | Chen C, Shin D, Watanabe H, Nakanishi Y, Kambara H, et al. (2013) Prediction of Hand Trajectory from Electrocorticography Signals in Primary Motor Cortex. PLoS ONE 8(12): e83534. | ||
+ | * '''Решение''': Для снижения размерности предлагается использовать метод локальной аппроксимации, предложенный в [Кузнецов 2015] использованный для классификации акселерометрических временных рядов [Карасиков 2016]. | ||
+ | * '''Новизна''': Предложен новый метод восстановления движений на основе электрокортикограмм. | ||
+ | * '''Авторы''': В.В. Стрижов, консультант ?? | ||
== Устарело == | == Устарело == | ||
Инструменты | Инструменты |
Версия 22:35, 12 января 2018
Задача 1
- Название: Классификация видов деятельности человека по измерениям фитнес-браслетов.
- Задача: По измерениям акселерометра и гироскопа требуется определить вид деятельности рабочего. Предполагается, что временные ряды измерений содержат элементарные движения, которые образуют кластеры в пространстве описаний временных рядов. Характерная продолжительность движения – секунды. Временные ряды размечены метками вида деятельности: работа, отдых. Характерная продолжительность деятельности – минуты. Требуется по описанию временного ряда и кластера восстановить вид деятельности.
- Данные: Временные ряды акселерометра WISDM (Временной ряд (библиотека примеров), раздел Accelerometry).
- Литература:
- Карасиков М.Е., Стрижов В.В. Классификация временных рядов в пространстве параметров порождающих моделей // Информатика и ее применения, 2016. [URL]
- Кузнецов М.П., Ивкин Н.П. Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию // Машинное обучение и анализ данных. 2015. T. 1, № 11. C. 1471 - 1483. [URL]
- Исаченко Р.В., Стрижов В.В. Метрическое обучение в задачах многоклассовой классификации временных рядов // Информатика и ее применения, 2016, 10(2) : 48-57. [URL]
- Задаянчук А.И., Попова М.С., Стрижов В.В. Выбор оптимальной модели классификации физической активности по измерениям акселерометра // Информационные технологии, 2016. [URL]
- Motrenko A.P., Strijov V.V. Extracting fundamental periods to segment human motion time series // Journal of Biomedical and Health Informatics, 2016, Vol. 20, No. 6, 1466 - 1476. [URL]
- Ignatov A., Strijov V. Human activity recognition using quasiperiodic time series collected from a single triaxial accelerometer // Multimedia Tools and Applications, 2015, 17.05.2015 : 1-14. [URL]
- Базовой алгоритм: Базовый алгоритм описан в работах [Карасиков, Стрижов: 2016] и [Кузнецов, Ивкин: 2014].
- Решение: Найти оптимальный способ сегментации и оптимальное описание временного ряда. Построить метрическое пространство описаний элементарных движений.
- Новизна:: Соединение двух характеристических времен описания жизни человека, комбинированная постановка задачи.
- Авторы: В.В. Стрижов, Р.Г. Нейчев
Задача 2
- Название: Построение аппроксимирующего описания скалограммы в задаче прогнозирования движений по электрокортикограмме.
- Задача: В рамках решения задачи декодирования сигналов ECoG решается задача классификации движений по временным рядам показаний электродов. Инструментами для извлечения признаков из временных рядов ECoG являются коэффициенты вейвлет-преобразования исследуемого сигнала [Макарчук 2016], на основе которых для каждого электрода строится скалограмма - двумерный массив признаков в пространстве частота-время. Объединение скалограмм для каждого электрода даёт признаки временного ряда в пространственно-частотно-временной области. Построенное таким образом признаковое описание заведомо содержит мультикоррелирующие признаки и является избыточным. Требуется предложить метод снижения размерности признакового пространства.
- Данные: Измерения положений пальцев при совершении простых жестов. Описание экспериментов данные.
- Литература:
- Макарчук Г.И., Задаянчук А.И. Стрижов В.В. 2016. Использование метода частичных наименьших квадратов для декодирования движения руки с помощью ECoG сигналов у обезьян. pdf
- Карасиков М.Е., Стрижов В.В. Классификация временных рядов в пространстве параметров порождающих моделей // Информатика и ее применения, 2016. [URL]
- Кузнецов М.П., Ивкин Н.П. Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию // Машинное обучение и анализ данных. 2015. T. 1, № 11. C. 1471 - 1483.
- Базовой алгоритм: PLS
Chen C, Shin D, Watanabe H, Nakanishi Y, Kambara H, et al. (2013) Prediction of Hand Trajectory from Electrocorticography Signals in Primary Motor Cortex. PLoS ONE 8(12): e83534.
- Решение: Для снижения размерности предлагается использовать метод локальной аппроксимации, предложенный в [Кузнецов 2015] использованный для классификации акселерометрических временных рядов [Карасиков 2016].
- Новизна: Предложен новый метод восстановления движений на основе электрокортикограмм.
- Авторы: В.В. Стрижов, консультант ??
Устарело
Инструменты
MikTeX | LaTex interpreter | 2.9 - ok |
Ramus | IDEF0 Editor | |
GhostScript | PS/PDF render | 32-bit (change to 64) |
GSview | PS PDF Viewer | 64-bit |
EPSViewer | EPS Viewer | 32-bit |
JabRef | Bibliography reference manager | |
Tortoise SVN | Interface to Subversion control | 64-bit only for Windows7 |
Daemon-Tools | Windows7-version only, not installed, not used | |
Kaspersky Internet Security | Antivirus | |
WinMerge | Compare two files or folders | |
Microsoft Office | Is it possible to | change it for OpenOffice? |
GoodSync | External HDD syncro | |
Skypeor Full version for Win 8.1 | IP telephone | strijov |
WinEdt6 | vs WinEdt5.3 | |
Lizardtech DjVu Browser | Scanned books | Plug-in |
InkScape | Graphics with EPS and TeX export | |
mactex |
Настройки
- Поиск в Windows 7: флаг, параметры индексирования, дополнительно, типы файлов: [TeX, m], индексировать содержимое. Добавить папки.
- Установка LaTex под El Capitan
- US patent Particle detector WO 2007052079 A1
Свидетельство о государственной регистрации программ для ЭВМ
- 2016617272 Макет модуля прогнозирования объемов спроса на грузовые железнодорожные перевозки
- 2016617271 Генератор модельных исходных данных объемов спроса на грузовые железнодорожные перевозки и экзогенных факторов
- 2010613192 Программная система для построения интегральных индикаторов качества