Участник:ADY

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Новая: == Машинное обучение == * Происходит и эволюционирует из тематики "искусственного интеллекта". ** В широ...)
(Машинное обучение)
Строка 3: Строка 3:
** В широком смысле изучает любые математические и кибернетические модели, способные к обучению: понимаемое (1) в широком смысле, как адаптацию в текущих условиях, с целью максимально эффективного действия; (2) в узком смысле, моделирование среды, с целью выяснения ее свойств и характеристик.
** В широком смысле изучает любые математические и кибернетические модели, способные к обучению: понимаемое (1) в широком смысле, как адаптацию в текущих условиях, с целью максимально эффективного действия; (2) в узком смысле, моделирование среды, с целью выяснения ее свойств и характеристик.
** В узком смысле изучает конкретные модели, которые имеют успех для процесса обучения (понимаемое еще в более узком смысле).
** В узком смысле изучает конкретные модели, которые имеют успех для процесса обучения (понимаемое еще в более узком смысле).
-
* Статистическую теорию машинного обучения можно понимать как логическое продолжение (или развитие) математической статистики для малых выборок, и как пролонгацию статистических идей для статистических задач в общей постановке: то есть, когда имеются и используются только данные и достаточно общие условия и знания о задаче и требуется определить все статистические (или любые иные объективные) характеристики системы.
+
* Статистическую теорию машинного обучения можно понимать как логическое продолжение (или развитие) математической статистики для малых выборок, и как пролонгацию статистических идей для статистических задач в общей постановке: то есть, когда имеются и используются только данные и достаточно общие условия и знания о задаче, и требуется определить все статистические (или любые иные объективные) характеристики системы.
* Ключевым для статистической теории машинного обучения является конечность процесса обучения: то есть при заданной точности требуемых характеристик (в рамках рассматриваемой задачи машинного обучения) число необходимых данных для обучения должно быть конечно.
* Ключевым для статистической теории машинного обучения является конечность процесса обучения: то есть при заданной точности требуемых характеристик (в рамках рассматриваемой задачи машинного обучения) число необходимых данных для обучения должно быть конечно.

Версия 08:51, 5 декабря 2007

Машинное обучение

  • Происходит и эволюционирует из тематики "искусственного интеллекта".
    • В широком смысле изучает любые математические и кибернетические модели, способные к обучению: понимаемое (1) в широком смысле, как адаптацию в текущих условиях, с целью максимально эффективного действия; (2) в узком смысле, моделирование среды, с целью выяснения ее свойств и характеристик.
    • В узком смысле изучает конкретные модели, которые имеют успех для процесса обучения (понимаемое еще в более узком смысле).
  • Статистическую теорию машинного обучения можно понимать как логическое продолжение (или развитие) математической статистики для малых выборок, и как пролонгацию статистических идей для статистических задач в общей постановке: то есть, когда имеются и используются только данные и достаточно общие условия и знания о задаче, и требуется определить все статистические (или любые иные объективные) характеристики системы.
  • Ключевым для статистической теории машинного обучения является конечность процесса обучения: то есть при заданной точности требуемых характеристик (в рамках рассматриваемой задачи машинного обучения) число необходимых данных для обучения должно быть конечно.
Личные инструменты