Машинное обучение (курс лекций, К.В.Воронцов)/Форма отчета

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(уточнение)
(уточнение)
Строка 7: Строка 7:
# Описание простого (стандартного и быстрого) базового решения (baseline), со ссылками на источники.
# Описание простого (стандартного и быстрого) базового решения (baseline), со ссылками на источники.
# Описание основного решения и его вариантов: модель, метод, алгоритм, со ссылками на источники.
# Описание основного решения и его вариантов: модель, метод, алгоритм, со ссылками на источники.
-
# Описание методики экспериментов: набор данных, проверяемые гипотезы, цели каждого эксперимента, методика кросс-валидации.
+
# Описание методики экспериментов: набор данных, проверяемые гипотезы, цели каждого эксперимента, критерий качества модели.
# Результаты экспериментов по подбору гиперпараметров для основного решения: графики зависимостей критериев качества от гиперпараметров модели.
# Результаты экспериментов по подбору гиперпараметров для основного решения: графики зависимостей критериев качества от гиперпараметров модели.
-
# Результаты экспериментов по сравнению основного решения с baseline: таблицы и/или графики с результатами сравнения моделей.
+
# Результаты экспериментов по сравнению основного решения с baseline, в форме таблиц и/или графиков.
# Выводы: что работает, что не работает, интересные факты и инсайты, рекомендации по применению.
# Выводы: что работает, что не работает, интересные факты и инсайты, рекомендации по применению.
# Ссылка на код в репозитории.
# Ссылка на код в репозитории.

Версия 13:04, 25 февраля 2018

Заданием по курсу «Машинное обучение» является выполнение прикладного исследования на реальных данных. Задачу можно взять у преподавателя, либо выбрать самостоятельно, согласовав с преподавателем. Результат оформляется в виде технического отчёта.

Разделы технического отчёта

  1. Постановка задачи: неформальное описание, формальное описание (ДНК — Дано-Найти-Критерий): структура входных данных, выходных данных, критерии качества.
  2. Описание простого (стандартного и быстрого) базового решения (baseline), со ссылками на источники.
  3. Описание основного решения и его вариантов: модель, метод, алгоритм, со ссылками на источники.
  4. Описание методики экспериментов: набор данных, проверяемые гипотезы, цели каждого эксперимента, критерий качества модели.
  5. Результаты экспериментов по подбору гиперпараметров для основного решения: графики зависимостей критериев качества от гиперпараметров модели.
  6. Результаты экспериментов по сравнению основного решения с baseline, в форме таблиц и/или графиков.
  7. Выводы: что работает, что не работает, интересные факты и инсайты, рекомендации по применению.
  8. Ссылка на код в репозитории.
  9. Ссылки на литературу.

См. также

Личные инструменты