Сходимость по вероятности
Материал из MachineLearning.
(дополнение) |
м (→Определение) |
||
Строка 3: | Строка 3: | ||
Пусть <tex>(\Omega,\mathcal{F},\mathbb{P})</tex> - [[вероятностное пространство]] с определёнными на нём случайными величинами <tex>X,\; X_n\;(n=1,2,\ldots)</tex>. | Пусть <tex>(\Omega,\mathcal{F},\mathbb{P})</tex> - [[вероятностное пространство]] с определёнными на нём случайными величинами <tex>X,\; X_n\;(n=1,2,\ldots)</tex>. | ||
- | Говорят, что <tex>\{X_n\}_{n=1}^{\infty}</tex> '''сходится по вероятности''' к <tex>X</tex>, если | + | Говорят, что <tex>\{X_n\}_{n=1}^{\infty}</tex> '''сходится по вероятности''' к <tex>X</tex>, если <tex>\forall \varepsilon > 0</tex>: |
- | + | <center><tex>\lim\limits_{n \to \infty} \mathbb{P}(|X_n - X| > \varepsilon) = 0</tex>.</center> | |
'''Обозначение''': <tex>X_n \stackrel{\mathbb{P}}{\longrightarrow} X</tex>. | '''Обозначение''': <tex>X_n \stackrel{\mathbb{P}}{\longrightarrow} X</tex>. |
Версия 16:03, 6 ноября 2009
Определение
Пусть - вероятностное пространство с определёнными на нём случайными величинами .
Говорят, что сходится по вероятности к , если :
Обозначение: .
Пояснение и пример
Данное свойство означает, что если взять величину с достаточно большим номером, то вероятность значительного отклонения от предельной величины будет небольшой. Однако важно понимать, что если одновременно (т.е. для одного и того же элементарного исхода ) рассмотреть последовательность , то она не обязана сходиться к значению , вообще говоря, ни при каком . Т.е. сколь угодно далеко могут находиться сильно отклоняющиеся значения, просто их "не очень много", поэтому вероятность того, что такое сильное отклонение попадет в заданном эксперименте на конкретно заданный номер , мала.
В качестве примера рассмотрим вероятностное пространство , вероятность - мера Лебега (т.е. вероятность любого интервала равна его длине). Случайные величины зададим следующим образом: для первых двух разбиваем на два интервала и и определяем равной 1 на первом интервале и 0 на втором, а - наоборот, 0 на первом интервале и 1 на втором. Далее берем следующие четыре величины , делим на четыре непересекающихся интервала длины и задаем каждую величину равной 1 на своем интервале и 0 на остальных. Затем рассматриваем следующие 8 величин, делим на 8 интервалов и т.д.
В результате для каждого элементарного исхода последовательность значений имеет вид:
последовательность состоит из серий длин , причем в каждой серии на каком-либо одном месте (зависящем от выбранного элементарного исхода) стоит значение 1, а на остальных местах - нули.
... to be continued...
Литература
- Биллингсли П. Сходимость вероятностных мер. — пер. с англ. — М.: Наука, 1977.
- Ширяев А.Н. Вероятность. — М.: МЦНМО, 2004.