Статистика (функция выборки)
Материал из MachineLearning.
м (→Выборочный квантиль: терминология) |
(дополнение) |
||
Строка 1: | Строка 1: | ||
{{TOCright}} | {{TOCright}} | ||
- | '''Статистика''' — это измеримая функция выборки. | + | '''Статистика''' (в узком смысле) — это измеримая числовая функция от [[выборка|выборки]], '''не зависящая от неизвестных параметров распределения'''. |
- | + | В широком смысле термин [[статистика (наука)|(математическая) статистика]] обозначает область знаний (и соответствующие ей учебные дисциплины), в которой излагаются общие вопросы сбора, измерения и анализа массовых статистических (количественных или качественных) данных. | |
== Определение == | == Определение == | ||
- | Пусть задана [[выборка|случайная выборка]] <tex>x^m = (x_1,\ldots,x_m)</tex> наблюдений <tex>x_i \in X</tex>. | + | Пусть задана [[выборка|случайная выборка]] <tex>x^m = (x_1,\ldots,x_m)</tex> наблюдений <tex>x_i \in X</tex>. Как правило, поскольку речь идет о задачах [[статистика (наука)|математической статистики]], распределение элементов этой выборки известно исследователю не полностью (например, содержит неизвестные числовые параметры). |
''Статистикой'' называется произвольная измеримая функция выборки | ''Статистикой'' называется произвольная измеримая функция выборки | ||
- | <tex>T:\: X^m \to \mathbb{R}</tex>. | + | <tex>T:\: X^m \to \mathbb{R}</tex>, которая не зависит от неизвестных параметров распределения. |
- | + | Условие измеримости статистики означает, что эта функция является [[случайная_величина|случайной величиной]], т.е. определены вероятности ее попадания в интервалы и другие борелевские множества на прямой. | |
+ | |||
+ | Наиболее содержательный аспект данного понятия, отличающий его от прочих случайных величин, зависящих от выборки, заключается в том, что от неизвестных параметров эта функция не зависит, т.е. исследователь может по имеющимся в его распоряжении данным найти значение этой функции, а, следовательно - основывать на этом значении оценки и прочие статистические выводы. | ||
+ | |||
+ | ===Пример=== | ||
+ | |||
+ | Предположим, что имеется числовая выборка <tex>x^m = (x_1,\ldots,x_m)</tex>, элементы которой имеют [[нормальное распределение]] <tex>\mathcal{N}(a,\sigma)</tex>. Допустим, что значение параметра <tex>a</tex> (математического ожидания) известно, т.е. это некоторое конкретное число, а значение среднеквадратичного отклонения <tex>\sigma</tex> неизвестно (и его требуется оценить). | ||
+ | |||
+ | |||
+ | |||
'''Примеры наиболее часто используемых статистик''' приводятся ниже. | '''Примеры наиболее часто используемых статистик''' приводятся ниже. |
Версия 19:37, 9 ноября 2009
|
Статистика (в узком смысле) — это измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения.
В широком смысле термин (математическая) статистика обозначает область знаний (и соответствующие ей учебные дисциплины), в которой излагаются общие вопросы сбора, измерения и анализа массовых статистических (количественных или качественных) данных.
Определение
Пусть задана случайная выборка наблюдений . Как правило, поскольку речь идет о задачах математической статистики, распределение элементов этой выборки известно исследователю не полностью (например, содержит неизвестные числовые параметры).
Статистикой называется произвольная измеримая функция выборки , которая не зависит от неизвестных параметров распределения.
Условие измеримости статистики означает, что эта функция является случайной величиной, т.е. определены вероятности ее попадания в интервалы и другие борелевские множества на прямой.
Наиболее содержательный аспект данного понятия, отличающий его от прочих случайных величин, зависящих от выборки, заключается в том, что от неизвестных параметров эта функция не зависит, т.е. исследователь может по имеющимся в его распоряжении данным найти значение этой функции, а, следовательно - основывать на этом значении оценки и прочие статистические выводы.
Пример
Предположим, что имеется числовая выборка , элементы которой имеют нормальное распределение . Допустим, что значение параметра (математического ожидания) известно, т.е. это некоторое конкретное число, а значение среднеквадратичного отклонения неизвестно (и его требуется оценить).
Примеры наиболее часто используемых статистик приводятся ниже.
Все они предполагают, что наблюдения являются числовыми, .
В последние годы активно развивается также статистика объектов нечисловой природы.
Моменты
Выборочное среднее
Выборочная дисперсия
Несмещённая оценка дисперсии:
Выборочный момент k-го порядка
Выборочное среднее есть момент первого порядка.
Выборочный центральный момент k-го порядка
Выборочная дисперсия есть центральный момент второго порядка.
Несмещённые оценки центральных моментов:
Выборочный коэффициент асимметрии
Если плотность распределения симметрична, то .
Если левый хвост распределения тяжелее, то .
Если правый хвост распределения тяжелее, то .
Выборочный коэффициент асимметрии используется для проверки распределения на симметричность, а также для грубой предварительной проверки на нормальность. Он позволяет отвергнуть, но не позволяет принять гипотезу нормальности.
Выборочный коэффициент эксцесса
Нормальное распределение имеет нулевой эксцесс, .
Если хвосты распределения «легче», а пик острее, чем у нормального распределения, то .
Если хвосты распределения «тяжелее», а пик более «приплюснутый», чем у нормального распределения, то .
Выборочный коэффициент эксцесса часто используется для грубой предварительной проверки на нормальность. Он позволяет отвергнуть, но не позволяет принять гипотезу нормальности.
Статистики, связанные с эмпирическим распределением
Эмпирическое распределение случайной величины , построенное по случайной выборке , есть функция
При любом фиксированном значение можно рассматривать как статистику.
Порядковые статистики
Порядковые статистики основаны на вычислении вариационного ряда, который получается из исходной выборки путём упорядочивания её элементов по возрастанию:
Значение называется k-й порядковой статистикой.
Выборочный квантиль
Выборочный -квантиль при есть
Размах выборки
Выборочная медиана
Ранговые статистики
Значение называется рангом элемента выборки , если .
Ранговой статистикой называется любая статистика, которая является функцией от рангов элементов , а не от их значений . Переход от значений к их рангам позволяет строить непараметрические статистические тесты, которые не опираются на априорные предположения о функции распределения выборки. Они имеют гораздо более широкую область применения, чем параметрические статистические тесты.
Средний ранг
Аналогом выборочного среднего является средний ранг:
Линейные ранговые статистики
Многие используемые на практике ранговые статистики принадлежат семейству линейных ранговых статистик, либо асимптотически приближаются к линейным при . Линейная ранговая статистика в общем случае имеет вид
где — произвольная заданная числовая матрица размера .
Литература
- Вероятность и математическая статистика: Энциклопедия / Под ред. Ю.В.Прохорова. — М.: Большая российская энциклопедия, 2003. — 912 с.
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006.
Ссылки
- Википедия:Статистика.
- Skewness — коэффициент асимметрии.
- Kurtosis — коэффициент эксцесса.