м |
м |
(61 промежуточная версия не показана) |
Строка 1: |
Строка 1: |
- | Ниже под обозначением <tex>X^n, \;\; X_i \sim p\cdot N(\mu,\sigma^2)+ \left(1-p\right)\cdot U\left[-a,b\right]</tex> понимается выборка объёма <tex>n</tex> из смеси нормального <tex>N(\mu,\sigma^2)</tex> и равномерного <tex>U\left[-a,b\right]</tex> распределений с весами <tex>p</tex> и <tex>1-p</tex> соответственно (при генерации каждой выборки используется случайный датчик — если его значение не превосходит <tex>p</tex>, то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из равномерного).
| + | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2009|Практические задания для студентов каф. ММП ВМК (2009 год)]] |
- | = Анализ поведения схожих критериев =
| + | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2010|Практические задания для студентов каф. ММП ВМК (2010 год)]] |
- | Требуется исследовать поведение указанной пары статистических критериев, подходящих для решения одной и той же задачи, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики зависимости достигаемых уровней значимости и оценок мощностей от параметров, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий. Для получения более гладких графиков рекомендуется применять оба критерия к одним и тем же выборкам, а не генерировать их отдельно для каждого критерия.
| + | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2011, ФУПМ|Практические задания для студентов ФУПМ МФТИ (2011 год)]] |
- | | + | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2011|Практические задания для студентов каф. ММП ВМК (2011 год)]] |
- | * <tex>X^n, \;\; X_i\sim Ber(p); </tex><br> <tex>H_0\,:\, p=\frac{1}{2},</tex><br> <tex>H_1\,:\, p\neq\frac{1}{2};</tex><br> <tex>p=0.01\,:\,0.01\,:\,0.99, \;\; n=5\,:\,1\,:\,50.</tex>
| + | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2012, ФУПМ|Практические задания для студентов ФУПМ МФТИ (2012 год)]] |
- | ::Ульянов: сравнить z-критерий и точный критерий для доли.
| + | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2012|Практические задания для студентов каф. ММП ВМК (2012 год)]] |
- | ::Новиков: сравнить критерии, основанные на доверительных интервалах Вальда и Уилсона (нулевая гипотеза отвергается на уровне значимости 5%, если 95% доверительный интервал для параметра не содержит <tex>\frac{1}{2}</tex>).
| + | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2013, ФУПМ|Практические задания для студентов ФУПМ МФТИ (2013 год)]] |
- | | + | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2013|Практические задания для студентов каф. ММП ВМК (2013 год)]] |
- | * <tex>X^n, \;\; X_i\sim N(\mu,\sigma); </tex><br> <tex>H_0\,:</tex> среднее значение <tex>X</tex> равно нулю,<br> <tex>H_1\,:</tex> среднее значение <tex>X</tex> не равно нулю;<br> <tex>\mu=-2\,:\,0.01\,:\,2, \;\; \sigma=1, \;\; n=5\,:\,1\,:\,50.</tex> | + | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2014, ФУПМ|Практические задания для студентов ФУПМ МФТИ (2014 год)]] |
- | ::Арбузова: сравнить одновыборочные t- и z-критерии.
| + | |
- | ::Корольков: сравнить одновыборочный [[критерий Стьюдента|t-критерий]] и критерий знаковых рангов Уилкоксона.
| + | |
- | | + | |
- | * <tex>X_1^n, \;\; X_{1i} \sim N(\mu_1, \sigma_1^2),\;\;X_2^n, \;\; X_{2i} \sim N(\mu_2, \sigma_2^2);</tex> <br> <tex>H_0\,:\, \mathbb{D}X_{1i} = \mathbb{D}X_{2i},</tex> <br> <tex>H_1\,:\, \mathbb{D}X_{1i} \neq \mathbb{D}X_{2i};</tex> <br> <tex>\mu_1=0, \;\; \sigma_1=1.</tex> | + | |
- | ::Шадриков: <tex>\mu_2=0, \;\; \sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n=5\,:\,1\,:\,50.</tex> Сравнить [[критерий Фишера]] и [[критерий Ансари-Брэдли]].
| + | |
- | ::Харациди: <tex>\mu_2=0\,:\,0.05\,:\,5, \;\; \sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n=50.</tex> Сравнить [[критерий Ансари-Брэдли]] и [[критерий Зигеля-Тьюки]].
| + | |
- | ::Рыжков: <tex>\mu_2=0\,:\,0.05\,:\,5, \;\; \sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n=20.</tex> Сравнить [[критерий Фишера]] и [[критерий Зигеля-Тьюки]].
| + | |
- | | + | |
- | * <tex>X^n, \;\; X_i \sim p\cdot N(0,1)+ \left(1-p\right)\cdot U\left[-a,a\right];</tex> <br> <tex> H_0\,:\; X_i \sim N,</tex> <br> <tex>H_1\,:\; H_0 </tex> неверна; <br> <tex>n=10\,:\,5\,:\,100.</tex>
| + | |
- | ::Шабашев: <tex>a=1, \;\; p=0\,:\,0.02\,:\,1.</tex> Сравнить [[критерий Шапиро-Уилка]] и [[критерий Лиллиефорса]].
| + | |
- | ::Сокурский: <tex>a=2, \;\; p=0\,:\,0.02\,:\,1.</tex> Сравнить [[критерий омега-квадрат|критерий Смирнова-Крамера-фон Мизеса]] и [[критерий Жарка-Бера]].
| + | |
- | ::Алешин: <tex>a=0.5\,:\,0.1\,:\,5, \;\; p=0.25.</tex> Сравнить [[критерий Лиллиефорса]] и [[критерий хи-квадрат]].
| + | |
- | | + | |
- | = Анализ устойчивости критериев к нарушению предположений =
| + | |
- | Требуется исследовать поведение указанного критерия в условиях нарушения лежащих в его основе предположений. Оценить мощность и достигаемый уровень значимости критерия при различных значениях параметров, сделать выводы об устойчивости.
| + | |
- | | + | |
- | * Одновыборочный [[критерий Стьюдента|t-критерий]], нарушение предположения о нормальности. <br> <tex>X^n, \;\; X_i \sim p\cdot N(\mu,1)+ \left(1-p\right)\cdot U\left[-a+\mu,a+\mu\right]; </tex> <br> <tex>H_0\,:\; \mathbb{E}X_i=0</tex> <br> <tex>H_1\,:\; \mathbb{E}X_i\neq0.</tex> <br> | + | |
- | ::Подоприхин: <tex>\mu=0\,:\,0.01\,:\,2, \;\; p=0.8, \;\; a=1, \;\; n=15\,:\,5\,:\,200.</tex>
| + | |
- | ::Ломов: <tex>\mu=1, \;\; p=0\,:\,0.01\,:\,1, \;\; a=10, \;\; n=5\,:\,5\,:\,150.</tex>
| + | |
- | ::Антипов: <tex>\mu=0\,:\,0.01\,:\,2, \;\; p=0\,:\,0.01\,:\,1, \;\; a=1, \;\; n=100.</tex>
| + | |
- | ::Найдин: <tex>\mu=0.5, \;\; p=0\,:\,0.01\,:\,1, \;\; a=0.1\,:\,0.1\,:\,5, \;\; n=100.</tex>
| + | |
- | | + | |
- | * [[Критерий Фишера]] для проверки равенства дисперсий, нарушение предположения о нормальности. <br> <tex>X_1^n, \;\; X_{1i} \sim p_1\cdot N(0,\sigma_1^2)+ \left(1-p_1\right)\cdot U\left[-a,a\right], \;\; X_2^n,\;\; X_{2i} \sim p_2\cdot N(0,\sigma_2^2)+ \left(1-p_2\right)\cdot U\left[-a,a\right]; </tex> <br> <tex>H_0\,:\, \mathbb{D}X_{1i} = \mathbb{D}X_{2i},</tex> <br> <tex>H_1\,:\, \mathbb{D}X_{1i} \neq \mathbb{D}X_{2i};</tex> <br> <tex>\sigma_1=2, \;\; \sigma_2=0.1\,:\,0.05\,:\,4.</tex> <br>
| + | |
- | ::Зиннурова: <tex>p_1=p_2=0.8, \;\; a=2, \;\; n=15\,:\,5\,:\,200.</tex>
| + | |
- | ::Львов: <tex>p_1=p_2=0\,:\,0.01\,:\,1, \;\; a=3, \;\; n=100.</tex>
| + | |
- | | + | |
- | * Двухвыборочный [[критерий Стьюдента|t-критерий]], нарушение предположения о равенстве дисперсий. <br> <tex>X_1^{n_1}, \;\; X_{1i} \sim N(0,1), \;\; X_2^{n_2}, \;\; X_{2i} \sim N(\mu,\sigma^2);</tex> <br> <tex>H_0\,:\; \mathbb{E}X_{1i} = \mathbb{E}X_{2i}, </tex> <br> <tex>H_1\,:\; \mathbb{E}X_{1i} \neq \mathbb{E}X_{2i}.</tex> | + | |
- | ::Горелов: <tex>\mu=0\,:\,0.02\,:\,2, \;\; \sigma=0.1\,:\,0.05\,:\,2, \;\; n_1=n_2=50.</tex>
| + | |
- | ::Петров: <tex>\mu=1, \;\; \sigma=0.1\,:\,0.05\,:\,2, \;\; n_1=15\,:\,5\,:\,200, \;\; n_2 = 50.</tex>
| + | |
- | ::Никифоров: <tex>\mu=0\,:\,0.02\,:\,2, \;\; \sigma=2, \;\; n_1=15\,:\,5\,:\,200, \;\; n_2 = 50.</tex>
| + | |
- | | + | |
- | = Ссылки =
| + | |
- | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)]] | + | |
| * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2014|Практические задания для студентов каф. ММП ВМК (2014 год)]] | | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2014|Практические задания для студентов каф. ММП ВМК (2014 год)]] |
- | * [[Участник:Riabenko|Контакты для отправки заданий]] | + | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2015|Практические задания для студентов каф. ММП ВМК (2015 год)]] |
- | <references/>
| + | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2015, ФУПМ|Практические задания для студентов ФУПМ МФТИ (2015 год)]] |
| + | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2016, ММП|Практические задания для студентов каф. ММП ВМК (2016 год)]] |
| + | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2016, ФУПМ|Практические задания для студентов ФУПМ МФТИ (2016 год)]] |
| | | |
- | [[Категория:Учебные курсы]] | + | <tex> |
| + | \frac{1}{\sum_i { N_{X_i}}} \left(\sum_i { N_{X_i} \mu_{X_i}}\right) +1.96 \sqrt{\frac{1}{\sum_i {N_{X_i} - 1}} \left( \sum_i { \left[(N_{X_i} - 1) \sigma_{X_i}^2 + N_{X_i} \mu_{X_i}^2\right] } - \left[\sum_i {N_{X_i}}\right]\mu_X^2 \right) } |
| + | </tex> |