Участник:Валентин Голодов/Песочница
Материал из MachineLearning.
Строка 46: | Строка 46: | ||
{{stub}} | {{stub}} | ||
- | |||
- |
Текущая версия
Содержание |
Введение
Постановка задачи
Пусть требуется вычислить интеграл
где - гладкая на отрезке функция.
Вычисление интегралов такого рода является типичной задачей, встречающейся при разложении функций в ряды Фурье, при построении диаграмм направленности антенн и т.д.
Изложение метода
Общий случай
Будем рассматривать функцию как весовую.
Подобно интегрированию без этого весового множителя, зададимся некоторыми и построим
интерполяционный многочлен Лагранжа степени совпадающий с в точкахи заменим исходный интеграл на
Последний интеграл vожет быть вычислен в явном виде
- где
Получилась квадратурная формула
с остаточным членом
Как и в общей формуле Ньютона-Котеса справедлива оценка
- где
Частные случаи для некоторых значений параметров
Обычно в программах вычисления интегралов от быстро осциллирующих функций используются формулы (1) и (2), соответствующие случаям: (Формула Филона) или Рассчетные коэффициенты в формуле (2) для формулы Филона:
Недостатки метода
Если формулы (1) и (2) использовать для вычисления интергалов от функций, не являющихся сильно осциллирующими, то может возникнуть следующая ситуация. Проиллюстрируем её для В этом случае
При имеем
Таким образом,
Пусть - малое число. Функции и вычисляются в машине с погрешностями соответственно. Вследствие этого коэффициенты приобритают погрешность оказывается, что погрешность коэффициентов , вычисляемых по формулам (1), может оказаться величиной порядка . При такая погрешность уже недопустима.
Пример программы
Список литературы
- Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков. Численные методы
М.