Участник:Mamonov
Материал из MachineLearning.
(→Осень 2019) |
(→Осень 2019) |
||
Строка 16: | Строка 16: | ||
'''Публикация: ''' | '''Публикация: ''' | ||
[https://forum.mirea.ru/download/sbornik_2019.pdf#page=134 ссылка] | [https://forum.mirea.ru/download/sbornik_2019.pdf#page=134 ссылка] | ||
+ | |||
+ | ==Весна 2020== | ||
+ | '''Нелинейное ранжирование результатов разведочного информационного поиска''' | ||
+ | |||
+ | Имея коллекцию документов, пользователю порой очень сложно в них разобраться. Существует множество подходов для поиска среди этих документов, но их недостаточно, когда пользователь хочет получить доступ к соответствующим документам в некотором логическом порядке, например, для учебных целей. В данной работе описан алгоритм ранжирования документов от простого к сложному, от общего к частному, то есть в том порядке, в котором пользователю будет легче разбираться в новой для него тематической области. Данный подход даёт пользователю абсолютно новый способ потребления контента. |
Версия 09:41, 6 марта 2020
Кирилл Мамонов
3 курс факультета инноваций и высоких технологий МФТИ
Кафедра анализа данных Яндекса
mamonov.kr@phystech.edu
Осень 2019
Карта оптимизма новостей России
В работе описана процедура, позволяющая анализировать эмоциональную окраску (или тональность) новостных сообщений для дальнейшей оценки «регионального уровня оптимизма». Результаты оценки визуализированы на интерактивной карте России, которая отражает региональный уровень оптимизма и его изменение во времени. Работа носит как научный, так и практический характер, поскольку в ней описана процедура по эффективному извлечению информации из новостей, а также анализ их тональности с дальнейшей визуализацией.
Выступление на конференции: IV Международная научно-практическая конференция «Актуальные проблемы и перспективы развития радиотехнических и инфокоммуникационных систем» «РАДИОИНФОКОМ — 2019»
Публикация: ссылка
Весна 2020
Нелинейное ранжирование результатов разведочного информационного поиска
Имея коллекцию документов, пользователю порой очень сложно в них разобраться. Существует множество подходов для поиска среди этих документов, но их недостаточно, когда пользователь хочет получить доступ к соответствующим документам в некотором логическом порядке, например, для учебных целей. В данной работе описан алгоритм ранжирования документов от простого к сложному, от общего к частному, то есть в том порядке, в котором пользователю будет легче разбираться в новой для него тематической области. Данный подход даёт пользователю абсолютно новый способ потребления контента.