Однофакторная параметрическая модель
Материал из MachineLearning.
(Новая: {{TOCright}} Однофакторная модель в рамках дисперсионного анализа используется д...) |
(→Метод множественных сравнений Шеффе) |
||
(5 промежуточных версий не показаны.) | |||
Строка 1: | Строка 1: | ||
{{TOCright}} | {{TOCright}} | ||
- | Однофакторная модель | + | Однофакторная модель [[Дисперсионный анализ|дисперсионного анализа]] используется для исследования влияния одной переменной (фактора) на одну зависимую количественную переменную ([[регрессионный анализ|отклик]]). |
Данные состоят из нескольких рядов наблюдений (обработок), которые рассматриваются как реализации независимых между собой выборок. Исходная гипотеза <tex>H_0</tex> говорит об отсутствии различия в обработках, т.е. предполагается, что все наблюдения можно считать одной выборкой из общей совокупности. | Данные состоят из нескольких рядов наблюдений (обработок), которые рассматриваются как реализации независимых между собой выборок. Исходная гипотеза <tex>H_0</tex> говорит об отсутствии различия в обработках, т.е. предполагается, что все наблюдения можно считать одной выборкой из общей совокупности. | ||
- | ==Примеры задач== | + | == Примеры задач == |
- | '''Пример 1:''' | + | '''Пример 1:''' Группа из 5 испытуемых была обследована с помощью трех экспериментальных заданий, направленных на изучение интеллектуальной настойчивости. Каждому испытуемому индивидуально предъявлялись последовательно три одинаковые анаграммы: четырехбуквенная, пятибуквенная и шестибуквенная. Можно ли считать, что фактор длины анаграммы влияет на длительность попыток ее решения? |
- | '''Пример 2:''' | + | '''Пример 2:''' Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью — 1 слово в 5 секунд, второй группе со средней скоростью — 1 слово в 2 секунды, и третьей группе с большой скоростью — 1 слово в секунду. Необходимо определить, будут ли показатели воспроизведения зависеть от скорости предъявления слов. |
==Метод множественных сравнений Шеффе== | ==Метод множественных сравнений Шеффе== | ||
Строка 18: | Строка 18: | ||
=== Дополнительное предположение === | === Дополнительное предположение === | ||
- | + | * распределения выборок нормальны; | |
+ | * выборки [[Связность|связные]]. | ||
=== Нулевая гипотеза === | === Нулевая гипотеза === | ||
Строка 37: | Строка 38: | ||
* [http://www.tspu.tula.ru/res/math/mop/lections/lection_7.htm#_Toc73845987 Дисперсионный анализ для связанных выборок] - Аналитическая статистика. | * [http://www.tspu.tula.ru/res/math/mop/lections/lection_7.htm#_Toc73845987 Дисперсионный анализ для связанных выборок] - Аналитическая статистика. | ||
- | * [http:// | + | * [http://khomich.narod.ru/metodichka/Dispersionniy/Dispersionniy.htm Дисперсионный анализ]. |
+ | * [http://www.ievbran.ru/Kiril/Library/Book1/content352/content352.htm Однофакторный дисперсионный анализ]. | ||
==См. также== | ==См. также== | ||
- | |||
* [[Однофакторная непараметрическая модель]] | * [[Однофакторная непараметрическая модель]] | ||
+ | * [[Двухфакторная непараметрическая модель]] | ||
* [[Дисперсионный анализ]] | * [[Дисперсионный анализ]] | ||
Текущая версия
|
Однофакторная модель дисперсионного анализа используется для исследования влияния одной переменной (фактора) на одну зависимую количественную переменную (отклик).
Данные состоят из нескольких рядов наблюдений (обработок), которые рассматриваются как реализации независимых между собой выборок. Исходная гипотеза говорит об отсутствии различия в обработках, т.е. предполагается, что все наблюдения можно считать одной выборкой из общей совокупности.
Примеры задач
Пример 1: Группа из 5 испытуемых была обследована с помощью трех экспериментальных заданий, направленных на изучение интеллектуальной настойчивости. Каждому испытуемому индивидуально предъявлялись последовательно три одинаковые анаграммы: четырехбуквенная, пятибуквенная и шестибуквенная. Можно ли считать, что фактор длины анаграммы влияет на длительность попыток ее решения?
Пример 2: Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью — 1 слово в 5 секунд, второй группе со средней скоростью — 1 слово в 2 секунды, и третьей группе с большой скоростью — 1 слово в секунду. Необходимо определить, будут ли показатели воспроизведения зависеть от скорости предъявления слов.
Метод множественных сравнений Шеффе
В качестве параметрического теста для выявления наличия статистически значимых различий между средними для нормально распределенных связных групп используется метод множественных сравнений Шеффе.
Пусть имеется выборок , объемом каждая, где
Дополнительное предположение
- распределения выборок нормальны;
- выборки связные.
Нулевая гипотеза
Критерий Шеффе проверяет нулевую гипотезу ,
где , — среднее арифметическое значение в группе с номером .
— параметры критерия.
Литература
- Шеффе Г. Дисперсионный анализ. — М., 1980.
- Аренс Х. Лёйтер Ю. Многомерный дисперсионный анализ.
- Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
- Холлендер М., Вульф Д.А. Непараметрические методы статистики.
Ссылки
- Дисперсионный анализ для связанных выборок - Аналитическая статистика.
- Дисперсионный анализ.
- Однофакторный дисперсионный анализ.
См. также
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |