Участник:Василий Ломакин/Коэффициент корреляции Кенделла
Материал из MachineLearning.
(5 промежуточных версий не показаны.) | |||
Строка 3: | Строка 3: | ||
<ref>Лагутин М. Б. Наглядная математическая статистика. — 223 с.</ref> | <ref>Лагутин М. Б. Наглядная математическая статистика. — 223 с.</ref> | ||
<ref>Кобзарь А. И. Прикладная математическая статистика. — 625 с.</ref> | <ref>Кобзарь А. И. Прикладная математическая статистика. — 625 с.</ref> | ||
+ | <ref>Лапач С. Н. Статистика в науке и бизнесе. — 156 с.</ref> | ||
- | |||
- | |||
- | |||
- | '''Коэффициент корреляции Кенделла''' — мера линейной связи между случайными величинами. | + | '''Коэффициент корреляции Кенделла''' (Kendall tau rank correlation coefficient) — мера линейной связи между случайными величинами. Корреляция Кенделла является [[Ранговая корреляция|ранговой]], то есть для оценки силы связи используются не численные значения, а соответствующие им ранги. Коэффициент инвариантен по отношению к любому монотонному преобразованию шкалы измерения. |
==Описание== | ==Описание== | ||
Строка 17: | Строка 15: | ||
Коэффициент корреляции Кенделла вычисляется по формуле: | Коэффициент корреляции Кенделла вычисляется по формуле: | ||
- | + | :<tex>\tau=1-\frac{4}{n(n-1)}R</tex>, где <tex>R = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\left[ \left[ x_i\ <\ x_j \right] \neq \left[ y_i\ <\ y_j \right] \right]</tex> — количество инверсий, образованных величинами <tex>y_i</tex>, расположенными в порядке возрастания соответствующих <tex>x_i</tex>. | |
Коэффициент <tex>\tau</tex> принимает значения из отрезка <tex>[-1;\;1]</tex>. Равенство <tex>\tau=1</tex> указывает на строгую прямую линейную зависимость, <tex>\tau=-1</tex> на обратную. | Коэффициент <tex>\tau</tex> принимает значения из отрезка <tex>[-1;\;1]</tex>. Равенство <tex>\tau=1</tex> указывает на строгую прямую линейную зависимость, <tex>\tau=-1</tex> на обратную. | ||
+ | |||
+ | '''Случай совпадающих наблюдений:''' | ||
+ | |||
+ | При наличии [[Вариационный ряд|связок]] коэффициент корреляции Кенделла следует вычислять следующим образом: | ||
+ | |||
+ | :<tex>\tau = \frac{2T}{sqrt{n(n-1)-U_x}sqrt{n(n-1)-U_y}},\ U_x=\sum_{i=1}^{q}u^x_i((u^x_i)^2-1),\ U_y=\sum_{i=1}^{f}u^y_i((u^y_i)^2-1),</tex><ref>Кобзарь А. И. Прикладная математическая статистика. — 625 с.</ref> | ||
+ | :где <tex>q</tex> и <tex>f</tex> — количество связок в выборках <tex>x</tex> и <tex>y</tex>, <tex>u^x_1, \ldots, u^x_q</tex>, <tex>u^y_1, \ldots, u^y_f</tex> — их размеры. Для элементов связок вычисляется [[Вариационный ряд|средний ранг]]. | ||
'''Обоснование критерия Кенделла:''' | '''Обоснование критерия Кенделла:''' | ||
Строка 25: | Строка 30: | ||
Будем говорить, что пары <tex>(x_i,\; y_i)</tex> и <tex>(x_j,\; y_j)</tex> согласованы, если <tex>x_i\ <\ y_j</tex> и <tex>x_i\ <\ y_j</tex> или <tex>x_i\ >\ y_j</tex> и <tex>x_i\ >\ y_j</tex>, то есть <tex>sign(x_j-x_i)sign(y_j-y_i)=1</tex>. Пусть <tex>S</tex> - число согласованных пар, <tex>R</tex> - число несогласованных пар. Тогда, в предположении, что среди <tex>x_i</tex> и среди <tex>y_i</tex> нет совпадений, превышение согласованности над несогласованностью есть: | Будем говорить, что пары <tex>(x_i,\; y_i)</tex> и <tex>(x_j,\; y_j)</tex> согласованы, если <tex>x_i\ <\ y_j</tex> и <tex>x_i\ <\ y_j</tex> или <tex>x_i\ >\ y_j</tex> и <tex>x_i\ >\ y_j</tex>, то есть <tex>sign(x_j-x_i)sign(y_j-y_i)=1</tex>. Пусть <tex>S</tex> - число согласованных пар, <tex>R</tex> - число несогласованных пар. Тогда, в предположении, что среди <tex>x_i</tex> и среди <tex>y_i</tex> нет совпадений, превышение согласованности над несогласованностью есть: | ||
- | + | :<tex>T = S - R = \sum_{i < j}sign(x_j-x_i)sign(y_j-y_i)</tex>. | |
Для измерения степени согласия Кенделл предложил следующий коэффициент: | Для измерения степени согласия Кенделл предложил следующий коэффициент: | ||
- | + | :<tex>\tau = \frac{T}{max{T}} = \frac{2T}{n(n-1)} = \frac{2(S-R)}{n(n-1)} = 1 - \frac{4}{n(n-1)}R</tex>. | |
Таким образом, коэффициент <tex>\tau</tex> (линейно связанный с <tex>R</tex>) можно считать ''мерой неупорядоченности'' второй последовательности относительно первой.<ref>Лагутин М. Б. Наглядная математическая статистика. — 345 с.</ref> | Таким образом, коэффициент <tex>\tau</tex> (линейно связанный с <tex>R</tex>) можно считать ''мерой неупорядоченности'' второй последовательности относительно первой.<ref>Лагутин М. Б. Наглядная математическая статистика. — 345 с.</ref> | ||
==Статистическая проверка наличия корреляции== | ==Статистическая проверка наличия корреляции== | ||
+ | |||
+ | [[Изображение:Standard_Normal_Density_-_Double-sided_Critical_Area.png|thumb|Критическая область критерия Кенделла.]] | ||
'''[[Нулевая гипотеза]]''' <tex>H_0</tex>: Выборки <tex>x</tex> и <tex>y</tex> не коррелируют. | '''[[Нулевая гипотеза]]''' <tex>H_0</tex>: Выборки <tex>x</tex> и <tex>y</tex> не коррелируют. | ||
Строка 43: | Строка 50: | ||
Рассмотрим центрированную и нормированную статистику Кенделла: | Рассмотрим центрированную и нормированную статистику Кенделла: | ||
- | + | :<tex>\tilde{\tau} = \frac{\tau}{\sqrt{D_{\tau}}},</tex>, где <tex>D_{\tau}=\frac{2(2n+5)}{9n(n-1)}</tex>. | |
Нулевая гипотеза отвергается (против альтернативы <tex>H_1</tex> - наличие корреляции), если: | Нулевая гипотеза отвергается (против альтернативы <tex>H_1</tex> - наличие корреляции), если: | ||
- | + | : <tex> \left|\tilde{\tau}\right| \ge \Phi_{1-\alpha/2} </tex>, где <tex>\Phi_{1-\alpha}</tex> есть <tex>(1-\alpha)</tex>-[[квантиль]] стандартного нормального распределения. | |
- | Аппроксимация удовлетворительно работает начиная с <tex>n\geq 10</tex>.<ref>Кобзарь А. И. Прикладная математическая статистика. — 625 с.</ref> | + | Аппроксимация удовлетворительно работает, начиная с <tex>n\geq 10</tex>.<ref>Кобзарь А. И. Прикладная математическая статистика. — 625 с.</ref> |
==Примеры== | ==Примеры== | ||
Строка 57: | Строка 64: | ||
===Направление линейной зависимости=== | ===Направление линейной зависимости=== | ||
- | [[Изображение:Fig1.1-c2.png|left|frame|Нормальные сгущения]]<br clear="both" /> | + | [[Изображение:Fig1.1-c2.png|left|frame|Корреляции Кенделла и Спирмена. Нормальные сгущения.]]<br clear="both" /> |
Коэффициенты корреляции реагируют на изменение направления и зашумлённость линейной зависимости между переменными. | Коэффициенты корреляции реагируют на изменение направления и зашумлённость линейной зависимости между переменными. | ||
Строка 63: | Строка 70: | ||
===Наклон линейного тренда=== | ===Наклон линейного тренда=== | ||
- | [[Изображение:Kendall Spearman 2.png|left|frame|Вращающаяся полоса]]<br clear="both" /> | + | [[Изображение:Kendall Spearman 2.png|left|frame|Корреляции Кенделла и Спирмена. Вращающаяся полоса.]]<br clear="both" /> |
Коэффициенты корреляции реагируют на изменение направления, но не реагируют на изменение наклона тренда. На первом, четвёртом и седьмом рисунках дисперсия одной из переменных близка к нулю, поэтому не удаётся зафиксировать факт линейной зависимости. | Коэффициенты корреляции реагируют на изменение направления, но не реагируют на изменение наклона тренда. На первом, четвёртом и седьмом рисунках дисперсия одной из переменных близка к нулю, поэтому не удаётся зафиксировать факт линейной зависимости. | ||
Строка 69: | Строка 76: | ||
===Нелинейная зависимость=== | ===Нелинейная зависимость=== | ||
- | [[Изображение:Kendall Spearman 3.png|left|frame|Нелинейная зависимость]]<br clear="both" /> | + | [[Изображение:Kendall Spearman 3.png|left|frame|Корреляции Кенделла и Спирмена. Нелинейная зависимость.]]<br clear="both" /> |
+ | |||
+ | Корреляции Кенделла и Спирмена не отражают меры нелинейной зависимости между переменными. | ||
- | ===Линейная и нелинейная | + | ===Линейная и нелинейная зависимости=== |
На каждой из приведённых ниже иллюстраций осуществляется переход от линейной зависимости к нелинейной. Коэффициенты корреляции Кенделла и Спирмена реагируют на это одинаковым образом. | На каждой из приведённых ниже иллюстраций осуществляется переход от линейной зависимости к нелинейной. Коэффициенты корреляции Кенделла и Спирмена реагируют на это одинаковым образом. | ||
- | [[Изображение:Kendall Spearman 1.2.png|left|frame|Перекрещенные полосы]]<br clear="both" /> | + | [[Изображение:Kendall Spearman 1.2.png|left|frame|Корреляции Кенделла и Спирмена. Перекрещенные полосы.]]<br clear="both" /> |
- | [[Изображение:Kendall Spearman 1.3.png|left|frame|Расширяющаяся полоса]]<br clear="both" /> | + | [[Изображение:Kendall Spearman 1.3.png|left|frame|Корреляции Кенделла и Спирмена. Расширяющаяся полоса.]]<br clear="both" /> |
- | [[Изображение:Kendall Spearman 1.4.png|left|frame|Синусоида с переменной амплитудой]]<br clear="both" /> | + | [[Изображение:Kendall Spearman 1.4.png|left|frame|Корреляции Кенделла и Спирмена. Синусоида с переменной амплитудой.]]<br clear="both" /> |
- | По мере смены линейной зависимости нелинейной | + | По мере смены линейной зависимости нелинейной значения коэффициентов корреляции падают. |
==Связь коэффициентов корреляции Кенделла и [[коэффициент корреляции Пирсона|Пирсона]]== | ==Связь коэффициентов корреляции Кенделла и [[коэффициент корреляции Пирсона|Пирсона]]== | ||
В случае выборок из нормального распределения коэффициент корреляции Кенделла <tex>\tau</tex> может быть использован для оценки [[коэффициент корреляции Пирсона|коэффициента корреляции Пирсона]] <tex>r</tex> по формуле: | В случае выборок из нормального распределения коэффициент корреляции Кенделла <tex>\tau</tex> может быть использован для оценки [[коэффициент корреляции Пирсона|коэффициента корреляции Пирсона]] <tex>r</tex> по формуле: | ||
- | + | : <tex>r=sin{\frac{\pi\tau}{2}}</tex>.<ref>Кобзарь А. И. Прикладная математическая статистика. — 625 с.</ref> | |
==Связь коэффициентов корреляции Кенделла и [[Коэффициент корреляции Спирмена|Спирмена]]== | ==Связь коэффициентов корреляции Кенделла и [[Коэффициент корреляции Спирмена|Спирмена]]== | ||
Выборкам <tex>x</tex> и <tex>y</tex> соответствуют последовательности рангов: | Выборкам <tex>x</tex> и <tex>y</tex> соответствуют последовательности рангов: | ||
- | + | :<tex>R_x=(R_{x_1},\ldots,R_{x_n})</tex>, где <tex>R_{x_i}</tex> — ранг <tex>i</tex>-го объекта в [[вариационный ряд|вариационном ряду]] выборки <tex>x</tex>; | |
- | + | :<tex>R_y=(R_{y_1},\ldots,R_{y_n})</tex>, где <tex>R_{y_i}</tex> — ранг <tex>i</tex>-го объекта в [[вариационный ряд|вариационном ряду]] выборки <tex>y</tex>. | |
Проведем операцию упорядочивания рангов. | Проведем операцию упорядочивания рангов. | ||
Строка 96: | Строка 105: | ||
Расположим ряд значений <tex>x_i</tex> в порядке возрастания величины: <tex>x_1\leq x_2\leq\cdots\leq x_n</tex>. Тогда последовательность рангов упорядоченной выборки <tex>x</tex> будет представлять собой последовательность натуральных чисел <tex>1,2,\cdots,n</tex>. Значения <tex>y</tex>, соответствующие значениям <tex>x</tex>, образуют в этом случае некоторую последовательность рангов <tex>T=(T_1,\cdots,T_n)</tex>: | Расположим ряд значений <tex>x_i</tex> в порядке возрастания величины: <tex>x_1\leq x_2\leq\cdots\leq x_n</tex>. Тогда последовательность рангов упорядоченной выборки <tex>x</tex> будет представлять собой последовательность натуральных чисел <tex>1,2,\cdots,n</tex>. Значения <tex>y</tex>, соответствующие значениям <tex>x</tex>, образуют в этом случае некоторую последовательность рангов <tex>T=(T_1,\cdots,T_n)</tex>: | ||
- | + | :<tex>(R_{x_i},\;R_{y_i})\rightarrow^{sort} (i,\;T_i),\; i=1,\cdots,n</tex>. | |
Коэффициент корреляции Кенделла <tex>\tau</tex> и [[коэффициент корреляции Спирмена]] <tex>\rho</tex> выражаются через ранги <tex>T_i,\; i=1,\cdots,n</tex> следующим образом: | Коэффициент корреляции Кенделла <tex>\tau</tex> и [[коэффициент корреляции Спирмена]] <tex>\rho</tex> выражаются через ранги <tex>T_i,\; i=1,\cdots,n</tex> следующим образом: | ||
- | + | :<tex>\rho=1-\frac{12}{n^3-n}\sum_{i<j}{(j-i)[T_i\ >\ T_j]};</tex> | |
- | + | :<tex>\tau=1-\frac{4}{n^2-1}\sum_{i<j}[T_i\ >\ T_j];</tex> | |
Заметно, что в случае <tex>\rho</tex> инверсиям придаются дополнительные веса <tex>(j-i)</tex>, таким образом <tex>\rho</tex> сильнее реагирует на несогласие ранжировок, чем <tex>\tau</tex>. Этот эффект проявляется в приведённых выше примерах: в большинстве из них <tex>\left| \rho \right|\ >\ \left| \tau \right|</tex>. | Заметно, что в случае <tex>\rho</tex> инверсиям придаются дополнительные веса <tex>(j-i)</tex>, таким образом <tex>\rho</tex> сильнее реагирует на несогласие ранжировок, чем <tex>\tau</tex>. Этот эффект проявляется в приведённых выше примерах: в большинстве из них <tex>\left| \rho \right|\ >\ \left| \tau \right|</tex>. | ||
'''Утверждение.'''<ref>Лагутин М. Б. Наглядная математическая статистика. — 345-346 с.</ref> Если выборки <tex>x</tex> и <tex>y</tex> не коррелируют (выполняется гипотеза <tex>H_0</tex>), то величины <tex>\rho</tex> и <tex>\tau</tex> сильно закоррелированы. Коэффициент корреляции между ними можно вычислить по формуле: | '''Утверждение.'''<ref>Лагутин М. Б. Наглядная математическая статистика. — 345-346 с.</ref> Если выборки <tex>x</tex> и <tex>y</tex> не коррелируют (выполняется гипотеза <tex>H_0</tex>), то величины <tex>\rho</tex> и <tex>\tau</tex> сильно закоррелированы. Коэффициент корреляции между ними можно вычислить по формуле: | ||
- | + | :<tex>corr(\rho,\;\tau)=\frac{2n+2}{\sqrt{4n^2+10n}}</tex>. | |
== История == | == История == |
Текущая версия
|
Коэффициент корреляции Кенделла (Kendall tau rank correlation coefficient) — мера линейной связи между случайными величинами. Корреляция Кенделла является ранговой, то есть для оценки силы связи используются не численные значения, а соответствующие им ранги. Коэффициент инвариантен по отношению к любому монотонному преобразованию шкалы измерения.
Описание
Заданы две выборки .
Вычисление корреляции Кенделла:
Коэффициент корреляции Кенделла вычисляется по формуле:
- , где — количество инверсий, образованных величинами , расположенными в порядке возрастания соответствующих .
Коэффициент принимает значения из отрезка . Равенство указывает на строгую прямую линейную зависимость, на обратную.
Случай совпадающих наблюдений:
При наличии связок коэффициент корреляции Кенделла следует вычислять следующим образом:
- [4]
- где и — количество связок в выборках и , , — их размеры. Для элементов связок вычисляется средний ранг.
Обоснование критерия Кенделла:
Будем говорить, что пары и согласованы, если и или и , то есть . Пусть - число согласованных пар, - число несогласованных пар. Тогда, в предположении, что среди и среди нет совпадений, превышение согласованности над несогласованностью есть:
- .
Для измерения степени согласия Кенделл предложил следующий коэффициент:
- .
Таким образом, коэффициент (линейно связанный с ) можно считать мерой неупорядоченности второй последовательности относительно первой.[5]
Статистическая проверка наличия корреляции
Нулевая гипотеза : Выборки и не коррелируют.
Статистика критерия:
Асимптотический критерий (при уровне значимости ):
Рассмотрим центрированную и нормированную статистику Кенделла:
- , где .
Нулевая гипотеза отвергается (против альтернативы - наличие корреляции), если:
- , где есть -квантиль стандартного нормального распределения.
Аппроксимация удовлетворительно работает, начиная с .[6]
Примеры
Ниже приведены примеры вычисления корреляций Кенделла и Спирмена. Значения коэффициентов указаны над каждым изображением в виде , где - корреляция Кенделла, - Спирмена. Заметно, что в большинстве случаев . Объяснение этого эффекта приводится ниже.
Направление линейной зависимости
Коэффициенты корреляции реагируют на изменение направления и зашумлённость линейной зависимости между переменными.
Наклон линейного тренда
Коэффициенты корреляции реагируют на изменение направления, но не реагируют на изменение наклона тренда. На первом, четвёртом и седьмом рисунках дисперсия одной из переменных близка к нулю, поэтому не удаётся зафиксировать факт линейной зависимости.
Нелинейная зависимость
Корреляции Кенделла и Спирмена не отражают меры нелинейной зависимости между переменными.
Линейная и нелинейная зависимости
На каждой из приведённых ниже иллюстраций осуществляется переход от линейной зависимости к нелинейной. Коэффициенты корреляции Кенделла и Спирмена реагируют на это одинаковым образом.
По мере смены линейной зависимости нелинейной значения коэффициентов корреляции падают.
Связь коэффициентов корреляции Кенделла и Пирсона
В случае выборок из нормального распределения коэффициент корреляции Кенделла может быть использован для оценки коэффициента корреляции Пирсона по формуле:
- .[7]
Связь коэффициентов корреляции Кенделла и Спирмена
Выборкам и соответствуют последовательности рангов:
- , где — ранг -го объекта в вариационном ряду выборки ;
- , где — ранг -го объекта в вариационном ряду выборки .
Проведем операцию упорядочивания рангов.
Расположим ряд значений в порядке возрастания величины: . Тогда последовательность рангов упорядоченной выборки будет представлять собой последовательность натуральных чисел . Значения , соответствующие значениям , образуют в этом случае некоторую последовательность рангов :
- .
Коэффициент корреляции Кенделла и коэффициент корреляции Спирмена выражаются через ранги следующим образом:
Заметно, что в случае инверсиям придаются дополнительные веса , таким образом сильнее реагирует на несогласие ранжировок, чем . Этот эффект проявляется в приведённых выше примерах: в большинстве из них .
Утверждение.[8] Если выборки и не коррелируют (выполняется гипотеза ), то величины и сильно закоррелированы. Коэффициент корреляции между ними можно вычислить по формуле:
- .
История
Критерий был введён в 1938 году известным британским статистиком Морисом Джорджем Кенделлом.
Примечания
- ↑ Лагутин М. Б. Наглядная математическая статистика. — 223 с.
- ↑ Кобзарь А. И. Прикладная математическая статистика. — 625 с.
- ↑ Лапач С. Н. Статистика в науке и бизнесе. — 156 с.
- ↑ Кобзарь А. И. Прикладная математическая статистика. — 625 с.
- ↑ Лагутин М. Б. Наглядная математическая статистика. — 345 с.
- ↑ Кобзарь А. И. Прикладная математическая статистика. — 625 с.
- ↑ Кобзарь А. И. Прикладная математическая статистика. — 625 с.
- ↑ Лагутин М. Б. Наглядная математическая статистика. — 345-346 с.
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 624-626 с.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 345-346 с.
- Лапач С. Н., Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 187-189 с.
Ссылки
- Ранговая корреляция
- Коэффициент корреляции Спирмена — другой способ расчёта ранговой корреляции.
- Коэффициент корреляции Пирсона
- Коэффициент корреляции — статья в русскоязычной Википедии.
- Kendall tau rank correlation coefficient — статья в англоязычной Википедии.