Частичная автокорреляция
Материал из MachineLearning.
(Различия между версиями)
(2 промежуточные версии не показаны) | |||
Строка 4: | Строка 4: | ||
==Описание== | ==Описание== | ||
+ | |||
+ | [[Изображение:Ml_im.png|thumb|right|300px|На графиках представлен пример временного ряда, его автокоррелиционная функция и его частичная автокорреляционная функция (сверху вниз).]] | ||
Допустим дан временной ряд <tex>y_i</tex>. Частичную автокорреляцию для лага <tex>k</tex> обозначим за <tex>pacf(k)</tex>. Тогда | Допустим дан временной ряд <tex>y_i</tex>. Частичную автокорреляцию для лага <tex>k</tex> обозначим за <tex>pacf(k)</tex>. Тогда | ||
Строка 20: | Строка 22: | ||
Частичная автокорреляция похожа на обычную [[Автокорреляция|автокорреляцию]], однако дополнительно удаляет линейную зависимость между cдвинутыми рядами путем вычитания <tex>y^{k-1}_t</tex> и <tex>y^{k-1}_{t+k}</tex>, как описано выше. | Частичная автокорреляция похожа на обычную [[Автокорреляция|автокорреляцию]], однако дополнительно удаляет линейную зависимость между cдвинутыми рядами путем вычитания <tex>y^{k-1}_t</tex> и <tex>y^{k-1}_{t+k}</tex>, как описано выше. | ||
- | |||
==Программные реализации== | ==Программные реализации== |
Текущая версия
|
Частичная (частная) автокорреляция (partial autocorrelation) временных рядов используется для нахождения периодичностей во временных рядах и нахождения порядка авторегрессионной модели ряда.
Описание
Допустим дан временной ряд . Частичную автокорреляцию для лага обозначим за . Тогда
где -- линейная регрессия на , т.е.
и
.
Частичная автокорреляция похожа на обычную автокорреляцию, однако дополнительно удаляет линейную зависимость между cдвинутыми рядами путем вычитания и , как описано выше.
Программные реализации
- В MATLAB функция parcorr
- В R функция pacf из пакета stats.
- В Python функция statsmodels.tsa.stattools.pacf библиотеки statsmodels.
Ссылки
- Autocorrelation and Partial Autocorrelation. MATLAB R2013b Documentation
- Partial Autocorrelation function on Wikipedia
- Статистический анализ данных (курс лекций, К.В. Воронцов)
- Box, G. E. P.; Jenkins, G. M.; Reinsel, G. C. (2008). Time Series Analysis, Forecasting and Control (4th ed.). Hoboken, NJ: Wiley. ISBN 9780470272848.