Участник:Riabenko/tmp

Материал из MachineLearning.

< Участник:Riabenko(Различия между версиями)
Перейти к: навигация, поиск
м
Текущая версия (19:11, 25 сентября 2018) (править) (отменить)
м
 
(64 промежуточные версии не показаны)
Строка 1: Строка 1:
-
Ниже под обозначением <tex>X^n, \;\; X_i \sim p\cdot N(\mu,\sigma^2)+ \left(1-p\right)\cdot U\left[-a,b\right]</tex> понимается выборка объёма <tex>n</tex> из смеси нормального <tex>N(\mu,\sigma^2)</tex> и равномерного <tex>U\left[-a,b\right]</tex> распределений с весами <tex>p</tex> и <tex>1-p</tex> соответственно (при генерации каждой выборки используется случайный датчик&nbsp;— если его значение не превосходит <tex>p</tex>, то добавляем в выборку элемент, взятый из нормального распределения, иначе&nbsp;— элемент, взятый из равномерного).
+
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2009|Практические задания для студентов каф. ММП ВМК (2009 год)]]
-
= Анализ поведения схожих критериев =
+
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2010|Практические задания для студентов каф. ММП ВМК (2010 год)]]
-
Требуется исследовать поведение указанной пары статистических критериев, подходящих для решения одной и той же задачи, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики зависимости достигаемых уровней значимости и оценок мощностей от параметров, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий. Для получения более гладких графиков рекомендуется применять оба критерия к одним и тем же выборкам, а не генерировать их отдельно для каждого критерия.
+
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2011, ФУПМ|Практические задания для студентов ФУПМ МФТИ (2011 год)]]
-
 
+
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2011|Практические задания для студентов каф. ММП ВМК (2011 год)]]
-
* <tex>X^n, \;\; X_i\sim Ber(p); </tex><br> <tex>H_0\,:\, p=\frac{1}{2},</tex><br> <tex>H_1\,:\, p\neq\frac{1}{2};</tex><br> <tex>p=0.01\,:\,0.01\,:\,0.99, \;\; n=5\,:\,1\,:\,50.</tex>
+
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2012, ФУПМ|Практические задания для студентов ФУПМ МФТИ (2012 год)]]
-
::Старожилец: сравнить z-критерий и точный критерий для доли.
+
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2012|Практические задания для студентов каф. ММП ВМК (2012 год)]]
-
::Вялый: сравнить критерии, основанные на доверительных интервалах Вальда и Уилсона (нулевая гипотеза отвергается на уровне значимости 5%, если 95% доверительный интервал для параметра не содержит <tex>\frac{1}{2}</tex>).
+
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2013, ФУПМ|Практические задания для студентов ФУПМ МФТИ (2013 год)]]
-
 
+
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2013|Практические задания для студентов каф. ММП ВМК (2013 год)]]
-
* <tex>X^n, \;\; X_i\sim N(\mu,\sigma); </tex><br> <tex>H_0\,:</tex> среднее значение <tex>X</tex> равно нулю,<br> <tex>H_1\,:</tex> среднее значение <tex>X</tex> не равно нулю;<br> <tex>\mu=-2\,:\,0.01\,:\,2, \;\; \sigma=1, \;\; n=5\,:\,1\,:\,50.</tex>
+
-
::Гончаров: сравнить одновыборочные t- и z-критерии.
+
-
::Каледин: сравнить одновыборочный [[критерий Стьюдента|t-критерий]] и критерий знаковых рангов Уилкоксона.
+
-
::Капаев: сравнить одновыборочный перестановочный критерий и критерий знаковых рангов Уилкоксона.
+
-
 
+
-
* <tex>X_1^n, \;\; X_{1i} \sim N(\mu_1, \sigma_1^2),\;\;X_2^n, \;\; X_{2i} \sim N(\mu_2, \sigma_2^2);</tex> <br> <tex>H_0\,:\, \mathbb{D}X_{1i} = \mathbb{D}X_{2i},</tex> <br> <tex>H_1\,:\, \mathbb{D}X_{1i} \neq \mathbb{D}X_{2i};</tex> <br> <tex>\mu_1=0, \;\; \sigma_1=1.</tex>
+
-
::Коновалов: <tex>\mu_2=0, \;\; \sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n=5\,:\,1\,:\,50.</tex> Сравнить [[критерий Фишера]] и [[WM-критерий]].
+
-
::Кузнецов: <tex>\mu_2=0\,:\,0.05\,:\,5, \;\; \sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n=50.</tex> Сравнить [[WM-критерий]] и [[критерий Зигеля-Тьюки]].
+
-
::Петров: <tex>\mu_2=0\,:\,0.05\,:\,5, \;\; \sigma_2 = 0.5\,:\,0.01\,:\,2, \;\; n=20.</tex> Сравнить [[критерий Фишера]] и [[критерий Зигеля-Тьюки]].
+
-
 
+
-
* <tex>X^n, \;\; X_i \sim p\cdot N(0,1)+ \left(1-p\right)\cdot U\left[-a,a\right];</tex> <br> <tex> H_0\,:\; X_i \sim N,</tex> <br> <tex>H_1\,:\; H_0 </tex> неверна; <br> <tex>n=10\,:\,5\,:\,100.</tex>
+
-
::Хрипко: <tex>a=1, \;\; p=0\,:\,0.02\,:\,1.</tex> Сравнить [[критерий Шапиро-Уилка]] и [[критерий Колмогорова-Смирнова]].
+
-
::Шепелев: <tex>a=2, \;\; p=0\,:\,0.02\,:\,1.</tex> Сравнить [[критерий омега-квадрат|критерий Смирнова-Крамера-фон Мизеса]] и [[критерий Жарка-Бера]].
+
-
::Вдовина: <tex>a=0.5\,:\,0.1\,:\,5, \;\; p=0.25.</tex> Сравнить [[критерий Колмогорова-Смирнова]] и [[критерий хи-квадрат]].
+
-
 
+
-
= Анализ устойчивости критериев к нарушению предположений =
+
-
Требуется исследовать поведение указанного критерия в условиях нарушения лежащих в его основе предположений. Оценить мощность и достигаемый уровень значимости критерия при различных значениях параметров, сделать выводы об устойчивости.
+
-
 
+
-
* Одновыборочный [[критерий Стьюдента|t-критерий]], нарушение предположения о нормальности. <br> <tex>X^n, \;\; X_i \sim p\cdot N(\mu,1)+ \left(1-p\right)\cdot U\left[-a+\mu,a+\mu\right]; </tex> <br> <tex>H_0\,:\; \mathbb{E}X_i=0</tex> <br> <tex>H_1\,:\; \mathbb{E}X_i\neq0.</tex> <br>
+
-
::Воронов: <tex>\mu=0\,:\,0.01\,:\,2, \;\; p=0.8, \;\; a=1, \;\; n=15\,:\,5\,:\,200.</tex>
+
-
::Гринчук: <tex>\mu=1, \;\; p=0\,:\,0.01\,:\,1, \;\; a=2, \;\; n=15\,:\,5\,:\,200.</tex> <!---ничего не происходит --->
+
-
::Катруца: <tex>\mu=0\,:\,0.01\,:\,2, \;\; p=0\,:\,0.01\,:\,1, \;\; a=1, \;\; n=150.</tex> <!---сделать n=100 --->
+
-
::Кащеева: <tex>\mu=0.5, \;\; p=0\,:\,0.01\,:\,1, \;\; a=0.1\,:\,0.1\,:\,5, \;\; n=100.</tex>
+
-
 
+
-
* [[Критерий Фишера]] для проверки равенства дисперсий, нарушение предположения о нормальности. <br> <tex>X_1^n, \;\; X_{1i} \sim p_1\cdot N(0,\sigma_1^2)+ \left(1-p_1\right)\cdot U\left[-a,a\right], \;\; X_2^n,\;\; X_{2i} \sim p_2\cdot N(0,\sigma_2^2)+ \left(1-p_2\right)\cdot U\left[-a,a\right]; </tex> <br> <tex>H_0\,:\, \mathbb{D}X_{1i} = \mathbb{D}X_{2i},</tex> <br> <tex>H_1\,:\, \mathbb{D}X_{1i} \neq \mathbb{D}X_{2i};</tex> <br> <tex>\sigma_1=2, \;\; \sigma_2=0.1\,:\,0.05\,:\,4.</tex> <br>
+
-
::Костин: <tex>p_1=p_2=0.8, \;\; a=2, \;\; n=15\,:\,5\,:\,200.</tex>
+
-
::Неклюдов: <tex>p_1=p_2=0\,:\,0.01\,:\,1, \;\; a=3, \;\; n=100.</tex>
+
-
 
+
-
* [[Критерий Зигеля-Тьюки]], нарушение предположения о равенстве медиан. <br> <tex>X_1^n, \;\; X_{1i} \sim N(0,1), \;\; X_2^n, \;\; X_{2i} \sim N(\mu,\sigma^2);</tex> <br> <tex>H_0\,:\; \mathbb{D}X_{1i} = \mathbb{D}X_{2i}, </tex> <br> <tex>H_1\,:\; \mathbb{D}X_{1i} \neq \mathbb{D}X_{2i}.</tex>
+
-
::Перекрестенко: <tex>\mu=0\,:\,0.02\,:\,2, \;\; \sigma=0.1\,:\,0.05\,:\,2, \;\; n=50.</tex>
+
-
::Пушняков: <tex>\mu=2, \;\; \sigma=0.1\,:\,0.05\,:\,2, \;\; n=15\,:\,5\,:\,200.</tex>
+
-
 
+
-
* Двухвыборочный [[критерий Стьюдента|t-критерий]], нарушение предположения о равенстве дисперсий. <br> <tex>X_1^{n_1}, \;\; X_{1i} \sim N(0,1), \;\; X_2^{n_2}, \;\; X_{2i} \sim N(\mu,\sigma^2);</tex> <br> <tex>H_0\,:\; \mathbb{E}X_{1i} = \mathbb{E}X_{2i}, </tex> <br> <tex>H_1\,:\; \mathbb{E}X_{1i} \neq \mathbb{E}X_{2i}.</tex>
+
-
::Рыскина: <tex>\mu=0\,:\,0.02\,:\,2, \;\; \sigma=0.1\,:\,0.05\,:\,2, \;\; n_1=n_2=50.</tex>
+
-
::Яшков: <tex>\mu=1, \;\; \sigma=0.1\,:\,0.05\,:\,2, \;\; n_1=15\,:\,5\,:\,200, \;\; n_2 = 50.</tex>
+
-
::Антипова: <tex>\mu=0\,:\,0.02\,:\,2, \;\; \sigma=2, \;\; n_1=15\,:\,5\,:\,200, \;\; n_2 = 50.</tex>
+
-
 
+
-
= Анализ двухэтапных процедур проверки гипотез =
+
-
Требуется построить описанную двухэтапную процедуру проверки гипотез и сравнить вероятности совершения ей ошибок первого и второго рода при уровне значимости <tex>\alpha</tex> с аналогичными показателями каждого из критериев второго этапа. Сделать выводы о корректности применения двухэтапной процедуры.
+
-
 
+
-
* Одновыборочная гипотеза о среднем с предварительной проверкой нормальности. Если нормальность отвергается на уровне значимости <tex>\alpha</tex>, используется критерий знаковых рангов, иначе — [[критерий Стьюдента|t-критерий]]. <br> <tex>X^n, \;\; X_i \sim p\cdot N(\mu,1)+ \left(1-p\right)\cdot U\left[-a+\mu,a+\mu\right]; </tex> <br> <tex>H_0\,:\; \mathbb{E}X_i=0</tex> <br> <tex>H_1\,:\; \mathbb{E}X_i\neq0.</tex> <br>
+
-
::Бескровный: <tex>\alpha=0.05, \;\; \mu=0\,:\,0.05\,:\,2, \;\; p=0.8, \;\; a=1, \;\; n=15\,:\,5\,:\,200.</tex> Нормальность проверяется критерием [[критерий Шапиро-Уилка|Шапиро-Уилка]]. <!--- взять a=2--->
+
-
::Поляков: <tex>\alpha=0.05, \;\; \mu=0\,:\,0.05\,:\,2, \;\; p=0\,:\,0.02\,:\,1, \;\; a=2, \;\; n=50.</tex> Нормальность проверяется критерием [[критерий омега-квадрат|Смирнова-Крамера-фон Мизеса]].
+
-
::Соколова: <tex>\alpha=0.1, \;\; \mu=0\,:\,0.05\,:\,2, \;\; p=0.8, \;\; a=0\,:\,0.05\,:\,3, \;\; n=50.</tex> Нормальность проверяется критерием [[критерий Лиллиефорса|Лиллиефорса]].<!--- взять n=30--->
+
-
 
+
-
* Двухвыборочная гипотеза о равенстве средних с предварительной проверкой нормальности. Если нормальность хотя бы одной из выборок отвергается на уровне значимости <tex>\alpha</tex>, используется [[критерий Уилкоксона-Манна-Уитни]], иначе — критерий Аспина-Уэлша. <br> <tex>X_1^{n_1}, \;\; X_{1i} \sim p_1\cdot N(0,1) + \left(1-p_1\right)\cdot U\left[-a,a\right] , \;\; X_2^{n_2}, \;\; X_{2i} \sim p_2\cdot N(\mu,1) + \left(1-p_2\right)\cdot U\left[-a+\mu,a+\mu\right];</tex> <br> <tex>H_0\,:\; \mathbb{E}X_{1i} = \mathbb{E}X_{2i}, </tex> <br> <tex>H_1\,:\; \mathbb{E}X_{1i} \neq \mathbb{E}X_{2i};</tex> <br> <tex>\mu=0\,:\,0.05\,:\,2.</tex>
+
-
::Харченко: <tex>\alpha=0.05, \;\; p_1=0.9, \;\; n_1=20, \;\; a=2, \;\; p_2 = 0.8, \;\; n_2 = 15\,:\,5\,:\,200.</tex> Нормальность проверяется критерием [[критерий Лиллиефорса|Лиллиефорса]].
+
-
::Балицкий: <tex>\alpha=0.01, \;\; p_1=p_2=0.8, \;\; n_1=n_2=15 \,:\,5\,:\,200, \;\; a=1.</tex> Нормальность проверяется критерием [[критерий омега-квадрат|Смирнова-Крамера-фон Мизеса]].
+
-
::Довгаль: <tex>\alpha=0.05, \;\; p_1=0.8, \;\; n_1=n_2=50, \;\; a=1, \;\; p_2 = 0\,:\,0.02\,:\,1.</tex> Нормальность проверяется критерием [[критерий Шапиро-Уилка|Шапиро-Уилка]].
+
-
::Трофимов: <tex>\alpha=0.1, \;\; p_1=p_2=0.8, \;\; n_1=n_2=50, \;\; a=0\,:\,0.05\,:\,3.</tex> Нормальность проверяется критерием [[критерий хи-квадрат|хи-квадрат]]. <!--- тут достаточно mu максимум 1--->
+
-
 
+
-
* Двухвыборочная гипотеза о равенстве средних с предварительной проверкой равенства дисперсий. Равенство дисперсий проверяется критерием [[критерий Фишера|Фишера]], если оно отвергается на уровне значимости <tex>\alpha</tex>, используется критерий Аспина-Уэлша, иначе — [[критерий Стьюдента|t-критерий]] для неизвестных равных дисперсий.<br> <tex>X_1^{n_1}, \;\; X_{1i} \sim N(0,1), \;\; X_2^{n_2}, \;\; X_{2i} \sim N(\mu,\sigma^2);</tex> <br> <tex>H_0\,:\; \mathbb{E}X_{1i} = \mathbb{E}X_{2i}, </tex> <br> <tex>H_1\,:\; \mathbb{E}X_{1i} \neq \mathbb{E}X_{2i}.</tex> <br>
+
-
::Папанов: <tex>\alpha=0.05, \;\; \mu=0\,:\,0.05\,:\,2, \;\; \sigma=0.1\,:\,0.05\,:\,2, \;\; n_1=n_2=50.</tex>
+
-
::Мангатаев: <tex>\alpha=0.05, \;\; \mu=1, \;\; \sigma=0.1\,:\,0.05\,:\,2, \;\; n_1=15\,:\,5\,:\,200, \;\; n_2 = 50.</tex>
+
-
::Бырдин: <tex>\alpha=0.01, \;\; \mu=0\,:\,0.05\,:\,2, \;\; \sigma=1.5, \;\; n_1=15\,:\,5\,:\,200, \;\; n_2 = 100.</tex>
+
-
 
+
-
= Ссылки =
+
-
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)]]
+
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2014, ФУПМ|Практические задания для студентов ФУПМ МФТИ (2014 год)]]
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2014, ФУПМ|Практические задания для студентов ФУПМ МФТИ (2014 год)]]
-
* [[Участник:Riabenko|Контакты для отправки заданий]]
+
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2014|Практические задания для студентов каф. ММП ВМК (2014 год)]]
-
<references/>
+
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2015|Практические задания для студентов каф. ММП ВМК (2015 год)]]
 +
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2015, ФУПМ|Практические задания для студентов ФУПМ МФТИ (2015 год)]]
 +
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2016, ММП|Практические задания для студентов каф. ММП ВМК (2016 год)]]
 +
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2016, ФУПМ|Практические задания для студентов ФУПМ МФТИ (2016 год)]]
-
[[Категория:Учебные курсы]]
+
<tex>
 +
\frac{1}{\sum_i { N_{X_i}}} \left(\sum_i { N_{X_i} \mu_{X_i}}\right) +1.96 \sqrt{\frac{1}{\sum_i {N_{X_i} - 1}} \left( \sum_i { \left[(N_{X_i} - 1) \sigma_{X_i}^2 + N_{X_i} \mu_{X_i}^2\right] } - \left[\sum_i {N_{X_i}}\right]\mu_X^2 \right) }
 +
</tex>

Текущая версия


\frac{1}{\sum_i { N_{X_i}}} \left(\sum_i { N_{X_i} \mu_{X_i}}\right) +1.96  \sqrt{\frac{1}{\sum_i {N_{X_i} - 1}} \left( \sum_i { \left[(N_{X_i} - 1) \sigma_{X_i}^2 + N_{X_i} \mu_{X_i}^2\right] } - \left[\sum_i {N_{X_i}}\right]\mu_X^2 \right) }

Личные инструменты