Машинное обучение (семинары, ВМК МГУ)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Практические задания)
 
(53 промежуточные версии не показаны)
Строка 3: Строка 3:
|[[Изображение:ML_surfaces.png|280px]]
|[[Изображение:ML_surfaces.png|280px]]
| valign="top"|
| valign="top"|
-
* Семинары в поддержку курса лекций [[Машинное обучение (курс лекций, К.В.Воронцов)|«Машинное обучение»]] [[Участник:Vokov|К.В. Воронцова]].
+
* Семинары в поддержку курса лекций [[Математические методы распознавания образов (курс лекций, В.В.Китов)|«Математические методы распознавания образов»]] [[Участник:Victor Kitov|В. В. Китова]].
* Ведутся на кафедре [[Математические методы прогнозирования (кафедра ВМиК МГУ)|ММП]] [[Факультет вычислительной математики и кибернетики МГУ| ВМК МГУ]] с осени 2012 года.
* Ведутся на кафедре [[Математические методы прогнозирования (кафедра ВМиК МГУ)|ММП]] [[Факультет вычислительной математики и кибернетики МГУ| ВМК МГУ]] с осени 2012 года.
* Семинарист: [[Участник:EvgSokolov|Соколов Е.А.]]
* Семинарист: [[Участник:EvgSokolov|Соколов Е.А.]]
-
* Почта: ''sokolov.evg+vmk-ml@gmail.com''
+
* Ассистент: Николаев В.В.
-
* Анонимные отзывы и комментарии по семинарам можно оставлять здесь: [https://docs.google.com/forms/d/1j8zMReMtl-BCeAVISxx_v42_y8GAVeolofFuAHQjHBc/viewform?usp=send_form].
+
* Почта семинариста: ''sokolov.evg+vmk-ml@gmail.com''
 +
* Почта для заданий: ''ml.cmc.msu@gmail.com''
 +
* Репозиторий с материалами: https://github.com/esokolov/ml-course-msu
 +
* Анонимные отзывы и комментарии по семинарам можно оставлять здесь: [https://docs.google.com/forms/d/1j8zMReMtl-BCeAVISxx_v42_y8GAVeolofFuAHQjHBc/viewform?usp=send_form https://docs.google.com/...]
|}
|}
-
<!-- == Новости == -->
+
=== Актуальная информация ===
-
<!-- * новостей нет! -->
+
-
== Выставление оценки за курс ==
+
Вся актуальная информация по курсу находится на странице https://github.com/esokolov/ml-course-msu
-
Итоговая контрольная работа:
+
=== Оценки ===
 +
https://docs.google.com/spreadsheets/d/1A5BJs_dJcmqY2KVBUCTWlXueTeFWNVT6Tbx5e3dN6_c/edit?usp=sharing
-
# На последней лекции будет проведена контрольная работа, которая затронет все темы, изученные в течение семестра.
+
== Страницы курса прошлых лет ==
-
# Контрольная оценивается по двухбалльной шкале (зачет/незачет), незачет влечет за собой недопуск к экзамену.
+
[[Машинное обучение (семинары, ВМК МГУ)/2015-2016 год, весна|2015-2016 год, весна]]
-
# Студент, не получивший допуск, переписывает на экзамене контрольную. В случае успеха он сдает экзамен на первой пересдаче. В случае незачета он снова переписывает контрольную на первой пересдаче, и так далее.
+
-
Семинары:
+
[[Машинное обучение (семинары, ВМК МГУ)/2015-2016 год, осень|2015-2016 год, осень]]
-
# На семинарах по каждой пройденной теме будут проводиться проверочные работы. Каждая проверочная оценивается по пятибалльной шкале. В зависимости от оценки за проверочную, студент освобождается от части или от всех задач по этой теме на итоговой контрольной работе.
 
-
# Также на семинарах будут выдаваться практические задания, которые будут оцениваться по пятибалльной шкале.
 
-
# В течение семестра будут проводиться конкурсы по анализу данных. Каждый конкурс оценивается по 15-балльной шкале. За первое, второе и третье место выставляется 15, 13 и 11 баллов соответственно при условии, что студенты выступят с докладом о своем решении (в противном случае они получают 10 баллов). За места с четвертого и по самое последнее, превосходящее бейзлайн, выставляется от 10 до 1 баллов по равномерной сетке. Если все присланные группой решения будут тривиальными, то преподаватель имеет право снизить максимальную оценку до 10 или до 5 баллов.
 
-
# Оценка за работу в семестре равна сумме оценок за проверочные работы, практические задания и конкурсы.
 
-
# Если оценка за работу в семестре не меньше 100% от максимальной оценки за проверочные и лабораторные работы, то студент освобождается от написания итоговой контрольной и получает допуск к экзамену автоматом.
 
-
# Если оценка за работу в семестре не меньше 80% от максимальной оценки за проверочные и лабораторные работы и конкурсы, то студент получает +1 балл на экзамене (при условии получения положительной оценки).
 
-
# В конце семестра разрешается переписать одну пропущенную по любой причине проверочную работу. Также разрешается переписать все проверочные, пропущенные по уважительной причине.
 
-
 
-
== Осенний семестр 2015/2016 ==
 
-
 
-
=== Расписание занятий ===
 
-
{|class = "standard"
 
-
! Дата !! Номер !! Тема !! Материалы !! Д/З
 
-
|-
 
-
|4 сентября
 
-
|align="center"|Семинар 1
 
-
|
 
-
Вводное занятие:
 
-
* Знакомство с основными определениями в машинном обучении
 
-
* Этапы решения задачи анализа данных
 
-
* Напоминание основных фактов из прошлых курсов
 
-
|
 
-
|
 
-
|}
 
-
 
-
=== Практические задания ===
 
-
{|class = "standard"
 
-
! Задание !! Тема !! Дата выдачи !! Срок сдачи !! Условие
 
-
|-
 
-
|
 
-
|
 
-
|
 
-
|
 
-
|
 
-
|-
 
-
|}
 
-
 
-
[[Машинное обучение (семинары, ВМК МГУ)/Виртуальная машина|Виртуальная машина с питоном и библиотеками]]
 
-
 
-
Полезные ссылки:
 
-
* [https://github.com/jrjohansson/scientific-python-lectures#online-read-only-versions Lectures on scientific computing with Python]
 
-
* [http://nbviewer.ipython.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb matplotlib - 2D and 3D plotting in Python]
 
-
* [http://nbviewer.ipython.org/gist/rpmuller/5920182 A Crash Course in Python for Scientists]
 
-
* [https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks A gallery of interesting IPython Notebooks]
 
-
* [http://nbviewer.ipython.org/github/rhiever/Data-Analysis-and-Machine-Learning-Projects/blob/master/example-data-science-notebook/Example%20Machine%20Learning%20Notebook.ipynb An Example Machine Learning Notebook]
 
-
* [http://www.labri.fr/perso/nrougier/teaching/numpy.100/ 100 NumPy Exercises]
 
-
* [http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/things_in_pandas.ipynb Pandas Tutorial]
 
-
 
-
=== Соревнования ===
 
-
{|class = "standard"
 
-
! Задание !! Тема !! Дата начала !! Дата окончания !! Ссылка
 
-
|-
 
-
|
 
-
|
 
-
|
 
-
|
 
-
|
 
-
|}
 
-
 
-
Все студенты должны прислать краткий отчет о своем решении и код, воспроизводящий результат.
 
-
 
-
=== Оценки ===
 
-
https://docs.google.com/spreadsheets/d/1vK3gM6sAj2TEqO9mPhm5cIuNSmpsw3CIpQnb4G4Dguo/edit?usp=sharing
 
-
 
-
== Страницы курса прошлых лет ==
 
[[Машинное обучение (семинары, ВМК МГУ)/2014-2015 год, весна|2014-2015 год, весна]]
[[Машинное обучение (семинары, ВМК МГУ)/2014-2015 год, весна|2014-2015 год, весна]]

Текущая версия

Содержание

Актуальная информация

Вся актуальная информация по курсу находится на странице https://github.com/esokolov/ml-course-msu

Оценки

https://docs.google.com/spreadsheets/d/1A5BJs_dJcmqY2KVBUCTWlXueTeFWNVT6Tbx5e3dN6_c/edit?usp=sharing

Страницы курса прошлых лет

2015-2016 год, весна

2015-2016 год, осень

2014-2015 год, весна

2014-2015 год, осень

2013-2014 год, весна

2013-2014 год, осень

2012 год

Личные инструменты