Глубинное обучение (курс лекций)/2020

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Новая: __NOTOC__ This is an introductory course on deep learning models and their application for solving different applied problems of image and text analysis. '''Instructors''': [[Участ...)
Строка 35: Строка 35:
!Date !! No. !! Topic !! Materials
!Date !! No. !! Topic !! Materials
|-
|-
-
| multicolumns=2|11 Sep. 2020 || multicolumn=2,align="center"|1 || Introduction. Fully-connected networks. ||
+
| rowspan="2"|11 Sep. 2020 || rowspan="2"|1 || Introduction. Fully-connected networks. ||
|-
|-
-
| || || Matrix calculus, automatic differentiation. || [https://drive.google.com/file/d/1Yu790uIPyxp9JIyysxfJDor_LJQu83gQ/view?usp=sharing Synopsis]
+
| Matrix calculus, automatic differentiation. || [https://drive.google.com/file/d/1Yu790uIPyxp9JIyysxfJDor_LJQu83gQ/view?usp=sharing Synopsis]
|}
|}

Версия 19:21, 15 сентября 2020

This is an introductory course on deep learning models and their application for solving different applied problems of image and text analysis.

Instructors: Dmitry Kropotov, Victor Kitov, Nadezhda Chirkova, Oleg Ivanov and Evgeny Nizhibitsky.

The timetable in Autumn 2020: Fridays, lectures begin at 10-30, seminars begin at 12-15, zoom-link

Lectures and seminars video recordings: link

Anytask invite code: ldQ0L2R

For questions: [course chat in Telegram]

Rules and grades

TBA

Lectures and seminars

Date No. Topic Materials
11 Sep. 2020 1 Introduction. Fully-connected networks.
Matrix calculus, automatic differentiation. Synopsis


Arxiv

2019

2017

2016

Личные инструменты