Алгоритм LOWESS
Материал из MachineLearning.
(→Выбор ядра \bar{K}) |
(→Выбор ядра \bar{K}) |
||
Строка 74: | Строка 74: | ||
=== Выбор ядра <tex>\bar{K} </tex>=== | === Выбор ядра <tex>\bar{K} </tex>=== | ||
- | :В качестве ядра <tex>\bar{K} </tex> большинство практических источников рекомендуют | + | :В качестве ядра <tex>\bar{K} </tex> большинство практических источников рекомендуют использовать следующее: |
- | использовать следующее: | + | |
Пусть <tex>s </tex> - есть медиана для оценок <tex>\gamma_1,\ldots,\gamma_m</tex>, | Пусть <tex>s </tex> - есть медиана для оценок <tex>\gamma_1,\ldots,\gamma_m</tex>, |
Версия 13:01, 31 декабря 2009
Статья плохо доработана. |
Алгоритм LOWESS (locally weighted scatter plot smoothing) - локально взвешенное сглаживание.
Содержание |
Постановка задачи
- Решается задача восстановления регрессии. Задано пространство объектов и множество возможных
ответов . Существует неизвестная целевая зависимость , значения которой известны только на объектах обучающей выборки . Требуется построить алгоритм , аппроксимирующий целевую зависимость .
Непараметрическая регрессия
- Непараметрическое восстановление регрессии основано на идее, что значение вычисляется
для каждого объекта по нескольким ближайшим к нему объектам обучающей выборки.
В формуле Надарая–Ватсона для учета близости объектов обучающей выборки к объекту предлагалось использовать невозрастающую, гладкую, ограниченную функцию , называемую ядром:
Параметр называется шириной ядра или шириной окна сглаживания. Чем меньше , тем быстрее будут убывать веса по мере удаления от . В общем случае зависит от объекта , т.е. . Тогда веса вычисляются по формуле
Оптимизация ширины окна
Чтобы оценить при данном и точность локальной аппроксимации в точке , саму эту точку необходимо исключить из обучающей выборки. Если этого не делать, минимум ошибки будет достигаться при . Такой способ оценивания оптимальной ширины окна называется скользящим контролем с исключением объектов по одному (leave-one-out, LOO):
Проблема выбросов
- Оценка Надарайя–Ватсона
крайне чувствительна к большим одиночным выбросам. На практике легко идентифицируются только грубые ошибки, возникающие, например, в результате сбоя оборудования или невнимательности персонала при подготовке данных. В общем случае можно лишь утверждать, что чем больше величина ошибки
тем в большей степени прецедент является выбросом , и тем меньше должен быть его вес. Эти соображения приводят к идее домножить веса на коэффициенты , где — ещё одно ядро, вообще говоря, отличное от .
Алгоритм LOWESS
Вход
- обучающая выборка;
весовые функции;
Выход
Коэффициенты
Алгоритм
- 1: инициализация
- 2: повторять
- 3: вычислить оценки скользящего контроля на каждом объекте:
- 4: вычислить новые значения коэффициентов :
- ;
- 5: пока коэффициенты не стабилизируются
Коэффициенты , как и ошибки , зависят от функции , которая, в свою очередь, зависит от . На каждой итерации строится функция , затем уточняются весовые множители . Как правило, этот процесс сходится довольно быстро. Он называется локально взвешенным сглаживанием (locally weighted scatter plot smoothing, LOWESS).
Выбор ядра
- В качестве ядра большинство практических источников рекомендуют использовать следующее:
Пусть - есть медиана для оценок , тогда , где
Литература
- Воронцов К.В. Лекции по алгоритмам восстановления регрессии. — 2007.
- A.I. McLeod Statistics 259b Robust Loess: S lowess.
См. также
- Непараметрическая регрессия
- Регрессионный анализ
- Local regression
- Расин, Джеффри (2008) «Непараметрическая эконометрика: вводный курс», Квантиль, №4, стр. 7–56.
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |
→