Участник:Ruzik/Песочница
Материал из MachineLearning.
Строка 70: | Строка 70: | ||
==Преимущества SG== | ==Преимущества SG== | ||
- | * Метод приспособлен для динамического (online)обучения, когда обучающие объекты поступают потоком, и надо постоянно быстро обновлять вектор <tex>w</tex>. | + | * Метод приспособлен для динамического (online) обучения, когда обучающие объекты поступают потоком, и надо постоянно быстро обновлять вектор <tex>w</tex>. |
* Алгоритм способен обучаться на избыточно больших выборках за счёт того, что случайной подвыборки может хватить для обучения. | * Алгоритм способен обучаться на избыточно больших выборках за счёт того, что случайной подвыборки может хватить для обучения. | ||
- | * | + | * Возможны различные стратегии обучения. Если выборка избыточно большая, или обучение происходит динамически, то возможно не сохранять обучающие объекты. Если выборка маленькая, то можно повторно предявлять для обучения одни и те же объекты. |
Версия 14:31, 3 января 2010
Содержание |
Метод стохастического градиента (Stochastic Gradient)
Градиентные методы - это широкий класс оптимизационных алгоритмов, используемых не только в машинном обучении. Здесь градиентный подход будет рассмотрен в качестве способа подбора вектора синаптических весов в линейном классификаторе (ссылка). Пусть - целевая зависимость, известная только на объектах обучающей выборки: .
Найдём алгоритм , аппроксимирующий зависимость . Согласно принципу минимизации эмпирического риска для этого достаточно решить оптимизационную задачу: , где - заданная функция потерь.
Для минимизации применим метод градиентного спуска. Это пошаговый алгоритм, на каждой итерации которого вектор изменяется в направлении наибольшего убывания функционала (то есть в направлении антиградиента):
- ,
где - положительный параметр, называемый темпом обучения (learning rate).
Возможно 2 основных подхода к реализации градиентного спуска:
- Пакетный (batch), когда на каждой итерации обучающая выборка просматривается целиком, и только после этого изменяется . Это требует больших вычислительных затрат.
- Стохастический (stochastic/online), когда на каждой итерации алгоритма из обучающей выборки каким-то (случайным) образом выбирается только один объект. Таким образом вектор w настраивается на каждый вновь выбираемый объект.
Алгоритм Stochastic Gradient (SG)
Вход:
- - обучающая выборка
- - темп обучения
- - параметр сглаживания функционала
Выход:
- Вектор весов
Тело:
- Инициализировать веса ;
- Инициализировать текущую оценку функционала:
- ;
- Повторять:
- Выбрать объект из (например, случайным образом);
- Вычислить выходное значение алгоритма и ошибку:
- ;
- Сделать шаг градиентного спуска:
- ;
- Оценить значение функционала:
- ;
- Пока значение не стабилизируется и/или веса не перестанут изменяться.
Порядок выбора объектов
Выше сказано, что в случае стохастического градиентного спуска объекты следует выбирать случайным образом. Однако существуют эвристики, направленные на улучшение сходимости, которые слегка модифицируют обычный случайный выбор:
- Перемешивание (shuffling). Предлагается случайно выбирать объекты, но попеременно из разных классов. Идея в том, что объекты из разных классов скорее всего менее "похожи", чем объекты из одного класса, поэтому вектор будет каждый раз сильнее изменяться.
- Возможен вариант алгоритма, когда выбор каждого объекта неравновероятен, причём вероятность выпадения объекта обратно пропорциональна величине ошибки на объекте. Следует заметить, что при такой эвристике метод становится очень чувствителен к шумам.
Способы инициализации весов
- Инициализировать вектор нулями. Этот способ используется очень во многих системах, но совсем не всегда является удачным.
- , где - размерность пространства признаков. Этот подход существенно более удачен, чем предыдущий, если соответствующим образом нормализовать признаковое описание (см. ниже.)
- Ещё один подход заключается в том, чтобы решить исходную оптимизационную задачу в случае статистически независимых признаков, линейной функции активации () и квадратичной функции потерь (). Тогда решение имеет вид:
- .
Параметр сглаживания
В алгоритме для оценки функционала на каждой итерации используется его приближённое значение по методу экспоненциального сглаживания, откуда лучше брать порядка . Если длина выборки избыточно большая, то следует увеличивать.
Известные частные случаи алгоритма
Метод SG (при соответствующем выборе функций активации и потерь) является обобщением следующих широко распространённых эвристик подбора и алгоритмов классификации:
- Адаптивный линейный элемент (Adalines);
- Правило Хэбба;
- Алгоритм k-средних (K-Means);
- Learning Vector Quantization (LVQ).
Преимущества SG
- Метод приспособлен для динамического (online) обучения, когда обучающие объекты поступают потоком, и надо постоянно быстро обновлять вектор .
- Алгоритм способен обучаться на избыточно больших выборках за счёт того, что случайной подвыборки может хватить для обучения.
- Возможны различные стратегии обучения. Если выборка избыточно большая, или обучение происходит динамически, то возможно не сохранять обучающие объекты. Если выборка маленькая, то можно повторно предявлять для обучения одни и те же объекты.