Алгоритм FRiS-СТОЛП
Материал из MachineLearning.
м (→Описание алгоритма: уточнение) |
м (→Вспомогательные функции) |
||
Строка 14: | Строка 14: | ||
===Вспомогательные функции=== | ===Вспомогательные функции=== | ||
В алгоритме FRiS-STOLP используются следующие вспомогательные функции: | В алгоритме FRiS-STOLP используются следующие вспомогательные функции: | ||
+ | |||
+ | * <tex>NN(u,U)</tex> – возвращает ближайший к <tex>u</tex> объект из множества <tex>U</tex>. | ||
* <tex>FindEtalon(X_y;\Omega)</tex> – исходя из набора уже имеющихся эталонов <tex>\Omega</tex> и набора <tex>X_y</tex> элементов класса <tex>Y</tex>, возвращает новый эталон для класса <tex>Y</tex> (алгоритм приведён ниже): | * <tex>FindEtalon(X_y;\Omega)</tex> – исходя из набора уже имеющихся эталонов <tex>\Omega</tex> и набора <tex>X_y</tex> элементов класса <tex>Y</tex>, возвращает новый эталон для класса <tex>Y</tex> (алгоритм приведён ниже): | ||
Строка 26: | Строка 28: | ||
3. Функция FindEtalon возвращает объект <tex>x \in X^l</tex> с максимальной эффективностью <tex>E_x</tex>: | 3. Функция FindEtalon возвращает объект <tex>x \in X^l</tex> с максимальной эффективностью <tex>E_x</tex>: | ||
<tex>x:=arg\max_{x \in X_y}{E_x}</tex> <br /> | <tex>x:=arg\max_{x \in X_y}{E_x}</tex> <br /> | ||
- | |||
- | |||
- | |||
===Описание алгоритма=== | ===Описание алгоритма=== |
Версия 12:26, 4 января 2010
Алгоритм FRiS-СТОЛП (FRiS-STOLP) - алгоритм отбора эталонных объектов для метрического классификатора на основе FRiS-функции.
Содержание[убрать] |
Назначение алгоритма
Пусть дана обучающая выборка , где
- объекты,
- классы, которым принадлежат эти объекты. Кроме того, задана метрика
, такая, что выполняется гипотеза компактности.
Алгоритм
Входные данные
На вход алгоритм получает обучающую выборку
Результат
В результате работы алгоритма для каждого класса строятся множества эталонных объектов
.
Вспомогательные функции
В алгоритме FRiS-STOLP используются следующие вспомогательные функции:
-
– возвращает ближайший к
объект из множества
.
-
– исходя из набора уже имеющихся эталонов
и набора
элементов класса
, возвращает новый эталон для класса
(алгоритм приведён ниже):
1. Для каждого объектавычисляются две характеристики: * «обороноспособность» объекта
:
![]()
* «толерантность» объекта(количественная оценка, насколько объект
в роли эталона класса
«не мешает» эталонам других классов):
![]()
2. На основании полученных характеристик вычисляется «эффективность» объекта:
![]()
3. Функция FindEtalon возвращает объектс максимальной эффективностью
:
![]()
Описание алгоритма
Сам алгоритм FRiS-STOLP состит из следующих шагов:
1. Инициализировать начальные множества эталонов. Для всех классов:
![]()
2. Инициализировать искомые множества эталонов. Для всех классов:
![]()
3. Пока:
3.1 Сформировать множествоправильно классифицированных объектов:
![]()
; 3.2 Удалить правильно классифицированные объекты из дальнейшего рассмотрения:
для всех классов
;
; 3.3 Добавить новый эталон для каждого класса
:
4. Вернуть искомые множества эталонов
для каждого класса
![]()
Преимущества алгоритма
Алгоритм FRiS-STOLP создаёт в процессе работы сокращенное описание обучающей выборки. Это позволяет сократить описание выборки, избавиться от ошибок и «выбросов», содержащихся в ней, но при этом сохранить информацию, необходимую для дальнейшего распознавания новых объектов.
См. также
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |