Участник:Василий Ломакин/Коэффициент корреляции Кенделла
Материал из MachineLearning.
Строка 1: | Строка 1: | ||
{{TOCright}} | {{TOCright}} | ||
+ | |||
+ | <ref>Лагутин М. Б. Наглядная математическая статистика. — 223 с.</ref> | ||
+ | <ref>Кобзарь А. И. Прикладная математическая статистика. — 625 с.</ref> | ||
TODO: | TODO: | ||
# Орфография, пунктуация | # Орфография, пунктуация | ||
# Рисунки | # Рисунки | ||
- | |||
- | |||
- | |||
'''Коэффициент корреляции Кенделла''' — мера линейной связи между случайными величинами. Коэффициент является [[Ранговая корреляция|ранговым]], то есть для оценки силы связи используются не численные значения, а соответствующие им ранги. Коэффициент инвариантен по отношению к любому монотонному преобразованию шкалы измерения. | '''Коэффициент корреляции Кенделла''' — мера линейной связи между случайными величинами. Коэффициент является [[Ранговая корреляция|ранговым]], то есть для оценки силы связи используются не численные значения, а соответствующие им ранги. Коэффициент инвариантен по отношению к любому монотонному преобразованию шкалы измерения. | ||
Строка 15: | Строка 15: | ||
'''Коэффициент корреляции Кенделла''' вычисляется по формуле | '''Коэффициент корреляции Кенделла''' вычисляется по формуле | ||
- | :: <tex>\tau=1-\frac{4}{n(n-1)}R</tex>, | + | ::<tex>\tau=1-\frac{4}{n(n-1)}R</tex>, где <tex>R = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\left[ \left[ x_i\ <\ x_j \right] \neq \left[ y_i\ <\ y_j \right] \right]</tex> — количество инверсий, образованных величинами <tex>y_i</tex>, расположенными в порядке возрастания соответствующих <tex>x_i</tex>. |
- | + | ||
Коэффициент <tex>\tau</tex> принимает значения из отрезка <tex>[-1;\;1]</tex>. Равенство <tex>\tau=1</tex> указывает на строгую прямую линейную зависимость, <tex>\tau=-1</tex> на обратную. | Коэффициент <tex>\tau</tex> принимает значения из отрезка <tex>[-1;\;1]</tex>. Равенство <tex>\tau=1</tex> указывает на строгую прямую линейную зависимость, <tex>\tau=-1</tex> на обратную. | ||
Строка 23: | Строка 22: | ||
Будем говорить, что пары <tex>(x_i,\; y_i)</tex> и <tex>(x_j,\; y_j)</tex> согласованы, если <tex>x_i\ <\ y_j</tex> и <tex>x_i\ <\ y_j</tex> или <tex>x_i\ >\ y_j</tex> и <tex>x_i\ >\ y_j</tex>, то есть <tex>sign(x_j-x_i)sign(y_j-y_i)=1</tex>. Пусть <tex>S</tex> - число согласованных пар, <tex>R</tex> - число несогласованных пар. Тогда, в предположении, что среди <tex>x_i</tex> и среди <tex>y_i</tex> нет совпадений, превышение согласованности над несогласованностью есть: | Будем говорить, что пары <tex>(x_i,\; y_i)</tex> и <tex>(x_j,\; y_j)</tex> согласованы, если <tex>x_i\ <\ y_j</tex> и <tex>x_i\ <\ y_j</tex> или <tex>x_i\ >\ y_j</tex> и <tex>x_i\ >\ y_j</tex>, то есть <tex>sign(x_j-x_i)sign(y_j-y_i)=1</tex>. Пусть <tex>S</tex> - число согласованных пар, <tex>R</tex> - число несогласованных пар. Тогда, в предположении, что среди <tex>x_i</tex> и среди <tex>y_i</tex> нет совпадений, превышение согласованности над несогласованностью есть: | ||
- | |||
- | Для измерения степени согласия Кенделл предложил коэффициент | + | ::<tex>T = S - R = \sum_{i < j}sign(x_j-x_i)sign(y_j-y_i)</tex>. |
- | <tex> | + | |
- | \tau = \frac{T}{max{T}}</tex> | + | Для измерения степени согласия Кенделл предложил следующий коэффициент: |
+ | |||
+ | ::<tex>\tau = \frac{T}{max{T}} = \frac{2T}{n(n-1)} = \frac{2(S-R)}{n(n-1)} = 1 - \frac{4}{n(n-1)}R</tex>. | ||
+ | |||
+ | Таким образом, коэффициент <tex>\tau</tex> (линейно связанный с <tex>R</tex>) можно считать ''мерой неупорядоченности'' второй последовательности относительно первой.<ref>Лагутин М. Б. Наглядная математическая статистика. — 345 с.</ref> | ||
==Статистическая проверка наличия корреляции== | ==Статистическая проверка наличия корреляции== | ||
Строка 61: | Строка 63: | ||
Коэффициент корреляции Кенделла <tex>\tau</tex> и [[коэффициент корреляции Спирмена]] <tex>\rho</tex> выражаются через ранги <tex>T_i,\; i=1,\cdots,n</tex> следующим образом: | Коэффициент корреляции Кенделла <tex>\tau</tex> и [[коэффициент корреляции Спирмена]] <tex>\rho</tex> выражаются через ранги <tex>T_i,\; i=1,\cdots,n</tex> следующим образом: | ||
- | ::<tex>\rho=1-\frac{12}{n^3-n}\sum_{i<j}{(j-i)[T_i>T_j]};</tex> | + | ::<tex>\rho=1-\frac{12}{n^3-n}\sum_{i<j}{(j-i)[T_i\ >\ T_j]};</tex> |
- | ::<tex>\tau=1-\frac{4}{n^2-1}\sum_{i<j}[T_i>T_j];</tex> | + | ::<tex>\tau=1-\frac{4}{n^2-1}\sum_{i<j}[T_i\ >\ T_j];</tex> |
'''Утверждение.'''<ref>Лагутин М. Б. Наглядная математическая статистика. — 345-346 с.</ref> Если выборки <tex>x</tex> и <tex>y</tex> не коррелируют (выполняется гипотеза <tex>H_0</tex>), то коэффициент корреляции между величинами <tex>\rho</tex> и <tex>\tau</tex> можно вычислить по формуле: | '''Утверждение.'''<ref>Лагутин М. Б. Наглядная математическая статистика. — 345-346 с.</ref> Если выборки <tex>x</tex> и <tex>y</tex> не коррелируют (выполняется гипотеза <tex>H_0</tex>), то коэффициент корреляции между величинами <tex>\rho</tex> и <tex>\tau</tex> можно вычислить по формуле: | ||
Строка 74: | Строка 76: | ||
== Литература == | == Литература == | ||
- | # ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006. — | + | # ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006. — 624-626 с. |
- | # ''Лагутин М. Б.'' Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003 | + | # ''Лагутин М. Б.'' Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 345-346 с. |
+ | # ''Лапач С. Н., Чубенко А. В., Бабич П. Н.'' Статистика в науке и бизнесе. — Киев: Морион, 2002. — 187-189 с. | ||
==Ссылки== | ==Ссылки== |
Версия 11:20, 4 января 2010
|
TODO:
- Орфография, пунктуация
- Рисунки
Коэффициент корреляции Кенделла — мера линейной связи между случайными величинами. Коэффициент является ранговым, то есть для оценки силы связи используются не численные значения, а соответствующие им ранги. Коэффициент инвариантен по отношению к любому монотонному преобразованию шкалы измерения.
Определение
Заданы две выборки .
Коэффициент корреляции Кенделла вычисляется по формуле
- , где — количество инверсий, образованных величинами , расположенными в порядке возрастания соответствующих .
Коэффициент принимает значения из отрезка . Равенство указывает на строгую прямую линейную зависимость, на обратную.
Вывод критерия Кенделла
Будем говорить, что пары и согласованы, если и или и , то есть . Пусть - число согласованных пар, - число несогласованных пар. Тогда, в предположении, что среди и среди нет совпадений, превышение согласованности над несогласованностью есть:
- .
Для измерения степени согласия Кенделл предложил следующий коэффициент:
- .
Таким образом, коэффициент (линейно связанный с ) можно считать мерой неупорядоченности второй последовательности относительно первой.[3]
Статистическая проверка наличия корреляции
Нулевая гипотеза : Выборки и не коррелируют.
Статистика критерия:
где .
При статистику критерия можно приблизить стандартным нормальным распределением: .
Критерий (при уровне значимости ):
- против альтернативы : наличие корреляции
- если , где — -квантиль стандартного нормального распределения.
Связь коэффициентов корреляции Кенделла и Пирсона
В случае выборок из нормального распределения коэффициент корреляции Кенделла может быть использован для оценки коэффициента корреляции Пирсона по формуле:
- .[4]
Связь коэффициентов корреляции Кенделла и Спирмена
Выборкам и соответствуют последовательности рангов:
- , где — ранг -го объекта в вариационном ряду выборки ;
- , где — ранг -го объекта в вариационном ряду выборки .
Проведем операцию упорядочевания рангов.
Расположим ряд значений в порядке возрастания величины: . Тогда последовательность рангов упорядоченной выборки будет представлять собой последовательность натуральных чисел . Значения , соответствующие значениям , образуют в этом случае некоторую последовательность рангов :
- .
Коэффициент корреляции Кенделла и коэффициент корреляции Спирмена выражаются через ранги следующим образом:
Утверждение.[5] Если выборки и не коррелируют (выполняется гипотеза ), то коэффициент корреляции между величинами и можно вычислить по формуле:
- .
История
Критерий был введён в 1938 году известным британским статистиком Морисом Джорджем Кенделлом.
Примечания
- ↑ Лагутин М. Б. Наглядная математическая статистика. — 223 с.
- ↑ Кобзарь А. И. Прикладная математическая статистика. — 625 с.
- ↑ Лагутин М. Б. Наглядная математическая статистика. — 345 с.
- ↑ Кобзарь А. И. Прикладная математическая статистика. — 625 с.
- ↑ Лагутин М. Б. Наглядная математическая статистика. — 345-346 с.
Литература
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 624-626 с.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 345-346 с.
- Лапач С. Н., Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 187-189 с.